1
|
Hui SC, Andescavage N, Limperopoulos C. The Role of Proton Magnetic Resonance Spectroscopy in Neonatal and Fetal Brain Research. J Magn Reson Imaging 2025; 61:2404-2424. [PMID: 39835523 PMCID: PMC12063769 DOI: 10.1002/jmri.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. 1H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to 1H-MRS in the fetal-neonatal brain and 2) the role of 1H-MRS in early fetal-neonatal development brain research. We performed a PubMed search to identify original studies using 1H-MRS in neonates and fetuses to establish the clinical applications of 1H-MRS. The eligible studies for this review included original research with 1H-MRS applications to the fetal-neonatal brain in healthy and high-risk conditions. We ran our search between 2000 and 2023, then added in several high-impact landmark publications from the 1990s. A total of 366 results appeared. After, we excluded original studies that did not include fetuses or neonates, non-proton MRS and non-neurological studies. Eventually, 110 studies were included in this literature review. Overall, the function of 1H-MRS in healthy fetal-neonatal brain studies focuses on measuring the change of metabolite concentrations during neurodevelopment and the physical properties of the metabolites such as T1/T2 relaxation times. For high-risk neonates, studies in very low birth weight preterm infants and full-term neonates with hypoxic-ischemic encephalopathy, along with examining the associations between brain biochemistry and cognitive neurodevelopment are most common. Additional high-risk conditions included infants with congenital heart disease or metabolic diseases, as well as fetuses of pregnant women with hypertensive disorders were of specific interest to researchers using 1H-MRS. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steve C.N. Hui
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of RadiologyThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Division of NeonatologyChildren's National HospitalWashingtonD.C.USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of RadiologyThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Prenatal Pediatric Institute, Children's National HospitalWashingtonD.C.USA
| |
Collapse
|
2
|
Urbi B, Sapaen V, Hughes I, Owusu MA, Sabet A, Broadley SA. Effect of cannabinoids on glutamate levels in the human brain: a systematic review and meta-analysis. J Cannabis Res 2025; 7:21. [PMID: 40259403 PMCID: PMC12010670 DOI: 10.1186/s42238-025-00277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 04/03/2025] [Indexed: 04/23/2025] Open
Abstract
Increased extracellular glutamate concentrations in the brain can cause neuronal injury. Cannabinoid use has been demonstrated to reduce extracellular glutamate levels in the brain in many animal models. However, there are no systematic reviews published evaluating the effect of cannabis on glutamate levels in the human brain. This review aimed to review studies that investigated the effect of cannabinoids on glutamate levels in the living human brain using neuroimaging methods and to provide evidence gathered from biomedical databases such as MEDLINE and EMBASE. Nine randomized controlled trials (RCTs) and ten observational studies met the eligibility criteria for this review. The articles included in the meta-analyses had a low risk of bias. Meta-analysis showed cannabis intake has no effects on the glutamate levels in human brain. However, there is limited evidence indicating that oral cannabidiol and cannabidivarin increased the glutamate/glutamine ratio in the basal ganglia while intravenous and vaped tetrahydrocannabinol increased glutamate in the basal ganglia. There is also some evidence showing oral cannabidiol increased glutamate in the hippocampus. Most of the observational studies in this review demonstrated a reduction in glutamate in the brain of chronic cannabis users. However, these findings are not definitive and will require further confirmations. This review suggests that acute cannabis administration may increase glutamate in the basal ganglia and hippocampus but not in other parts of the brain, while chronic cannabis use lead to a decrease in glutamate levels in some parts of the brain. The quality of this evidence is limited therefore further studies are needed.
Collapse
Affiliation(s)
- Berzenn Urbi
- School of Medicine, Griffith University, Brisbane, QLD, Australia.
| | - Vincent Sapaen
- Research Office, Gold Coast Hospital and Health Service, Southport, QLD, Australia
| | - Ian Hughes
- Research Office, Gold Coast Hospital and Health Service, Southport, QLD, Australia
| | - Maame Amma Owusu
- Research Office, Gold Coast Hospital and Health Service, Southport, QLD, Australia
| | - Arman Sabet
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Department of Neurology, Gold Coast Hospital and Health Service, Southport, QLD, Australia
| | - Simon A Broadley
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Department of Neurology, Gold Coast Hospital and Health Service, Southport, QLD, Australia
| |
Collapse
|
3
|
Wagner L, Cakar ME, Banchik M, Chiem E, Glynn SS, Than AH, Green SA, Dapretto M. Beyond motor learning: Insights from infant magnetic resonance imaging on the critical role of the cerebellum in behavioral development. Dev Cogn Neurosci 2025; 72:101514. [PMID: 39919679 PMCID: PMC11848473 DOI: 10.1016/j.dcn.2025.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Although the cerebellum is now recognized for its crucial role in non-motor functions such as language, perceptual processes, social communication, and executive function in adults, it is often overlooked in studies of non-motor behavioral development in infancy. Recent magnetic resonance imaging (MRI) research increasingly shows the cerebellum is key to understanding the emergence of complex human behaviors and neurodevelopmental conditions. This review summarizes studies from diverse MRI modalities that link early cerebellar development from birth to age two with emerging non-motor behaviors and psychiatric symptomatology. Our focus centered on both term and preterm infants, excluding studies of perinatal injury and cerebellar pathology. We conclude that the cerebellum is implicated in many non-motor behaviors and implicit learning mechanisms in infancy. The field's current limitations include inconsistencies in study design, a paucity of gold-standard infant neuroimaging tools, and treatment of the cerebellum as a uniform structure. Moving forward, the cerebellum should be considered a structure of greater interest to the developmental neuroimaging community. Studies should test developmental hypotheses about the behavioral roles of specific cerebro-cerebellar circuits, and theoretical frameworks such as Olson's "model switch" hypothesis of cerebellar learning. Large-scale, longitudinal, well-powered neuroimaging studies of typical and preterm development will be key.
Collapse
Affiliation(s)
- Lauren Wagner
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Melis E Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Megan Banchik
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Emily Chiem
- Molecular, Cellular, Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, 90095, United States
| | - Siobhan Sive Glynn
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Amy H Than
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
4
|
Basu SK, Kapse KJ, Murnick J, Pradhan S, Spoehr E, Zhang A, Andescavage N, Nino G, du Plessis AJ, Limperopoulos C. Impact of bronchopulmonary dysplasia on brain GABA concentrations in preterm infants: Prospective cohort study. Early Hum Dev 2023; 186:105860. [PMID: 37757548 PMCID: PMC10843009 DOI: 10.1016/j.earlhumdev.2023.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is associated with cognitive-behavioral deficits in very preterm (VPT) infants, often in the absence of structural brain injury. Advanced GABA-editing techniques like Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) can quantify in-vivo gamma-aminobutyric acid (GABA+, with macromolecules) and glutamate (Glx, with glutamine) concentrations to investigate for neurophysiologic perturbations in the developing brain of VPT infants. OBJECTIVE To investigate the relationship between the severity of BPD and basal-ganglia GABA+ and Glx concentrations in VPT infants. METHODS MRI studies were performed on a 3 T scanner in a cohort of VPT infants [born ≤32 weeks gestational age (GA)] without major structural brain injury and healthy-term infants (>37 weeks GA) at term-equivalent age. MEGA-PRESS (TE68ms, TR2000ms, 256averages) sequence was acquired from the right basal-ganglia voxel (∼3cm3) and metabolite concentrations were quantified in institutional units (i.u.). We stratified VPT infants into no/mild (grade 0/1) and moderate-severe (grade 2/3) BPD. RESULTS Reliable MEGA-PRESS data was available from 63 subjects: 29 healthy-term and 34 VPT infants without major structural brain injury. VPT infants with moderate-severe BPD (n = 20) had the lowest right basal-ganglia GABA+ (median 1.88 vs. 2.28 vs. 2.12 i.u., p = 0.025) and GABA+/choline (0.73 vs. 0.99 vs. 0.88, p = 0.004) in comparison to infants with no/mild BPD and healthy-term infants. The GABA+/Glx ratio was lower (0.34 vs. 0.44, p = 0.034) in VPT infants with moderate-severe BPD than in infants with no/mild BPD. CONCLUSIONS Reduced GABA+ and GABA+/Glx in VPT infants with moderate-severe BPD indicate neurophysiologic perturbations which could serve as early biomarkers of future cognitive deficits.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., USA; Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA
| | - Kushal J Kapse
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
| | - Jonathan Murnick
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., USA
| | - Subechhya Pradhan
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA
| | - Emma Spoehr
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
| | - Anqing Zhang
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Biostatistics and Epidemiology, Children's National Hospital, Washington, D.C., USA
| | - Nickie Andescavage
- Neonatology, Children's National Hospital, Washington, D.C., USA; Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA
| | - Gustavo Nino
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Pulmonary and Sleep Medicine, Children's National Hospital, Washington, D.C., USA
| | - Adre J du Plessis
- The George Washington University School of Medicine, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA; Perinatal Pediatrics institute, Children's National Hospital, Washington, D.C., USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA; The George Washington University School of Medicine, Washington, D.C., USA; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., USA; Division of Neurology, Children's National Hospital, Washington, D.C., USA.
| |
Collapse
|
5
|
Yang Q, Song J, Deng Z, Shi C, Li S, Zhuang G, Hao H, Cai Y. Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios. Eur J Pediatr 2023; 182:5015-5024. [PMID: 37644170 DOI: 10.1007/s00431-023-05171-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
This study aimed to compare the blood metabolic status of neonates with idiopathic polyhydramnios (IPH) and those with normal amniotic fluid, and to explore the relationship between IPH and fetal health. Blood metabolites of 32 patients with IPH and 32 normal controls admitted to the Sixth Affiliated Hospital of Sun Yat-sen University between January 2017 and December 2022 were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) and metabolite enrichment analyses were performed to identify the differential metabolites and metabolic pathways. There was a significant difference in the blood metabolism between newborns with IPH and those with normal amniotic fluid. Six discriminant metabolites were identified: glutamate, serine, asparagine, aspartic acid, homocysteine, and phenylalanine. Differential metabolites were mainly enriched in two pathways: aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism. CONCLUSIONS This study is the first to investigate metabolomic profiles in newborns with IPH and examine the correlation between IPH and fetal health. Differential metabolites and pathways may affect amino acid synthesis and the nervous system. Continuous attention to the development of the nervous system in children with IPH is necessary. WHAT IS KNOWN • There is an increased risk of adverse pregnancy outcomes with IPH, such as perinatal death, neonatal asphyxia, neonatal intensive care admission, cesarean section rates, and postpartum hemorrhage. • Children with a history of IPH have a higher proportion of defects than the general population, particularly central nervous system problems, neuromuscular disorders, and other malformations. WHAT IS NEW • In neonates with IPH, six differential metabolites were identified with significant differences and good AUC values using LC-MS/MS analysis: glutamic acid, serine, asparagine, aspartic acid, homocysteine, and phenylalanine, which were mainly enriched in two metabolic pathways: aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism. • These differential metabolites and pathways may affect amino acid synthesis and development of the nervous system in neonates with IPH.
Collapse
Affiliation(s)
- Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, 519000, Zhuhai, China
| | - Zhirong Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Congcong Shi
- Laboratory of Inborn Metabolism Errors, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Guiying Zhuang
- Department of Neonatology, The Maternal and Child Health Care Hospital of Huadu, 510800, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China.
- Laboratory of Inborn Metabolism Errors, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China.
| |
Collapse
|
6
|
Basu SK, Pradhan S, Sharker YM, Kapse KJ, Murnick J, Chang T, Lopez CA, Andescavage N, duPlessis AJ, Limperopoulos C. Severity of prematurity and age impact early postnatal development of GABA and glutamate systems. Cereb Cortex 2023; 33:7386-7394. [PMID: 36843135 PMCID: PMC10267637 DOI: 10.1093/cercor/bhad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/28/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamatergic system perturbations following premature birth may explain neurodevelopmental deficits in the absence of structural brain injury. Using GABA-edited spectroscopy (MEscher-GArwood Point Resolved Spectroscopy [MEGA-PRESS] on 3 T MRI), we have described in-vivo brain GABA+ (+macromolecules) and Glx (glutamate + glutamine) concentrations in term-born infants. We report previously unavailable comparative data on in-vivo GABA+ and Glx concentrations in the cerebellum, the right basal ganglia, and the right frontal lobe of preterm-born infants without structural brain injury. Seventy-five preterm-born (gestational age 27.8 ± 2.9 weeks) and 48 term-born (39.6 ± 0.9 weeks) infants yielded reliable MEGA-PRESS spectra acquired at post-menstrual age (PMA) of 40.2 ± 2.3 and 43.0 ± 2 weeks, respectively. GABA+ (median 2.44 institutional units [i.u.]) concentrations were highest in the cerebellum and Glx higher in the cerebellum (5.73 i.u.) and basal ganglia (5.16 i.u.), with lowest concentrations in the frontal lobe. Metabolite concentrations correlated positively with advancing PMA and postnatal age at MRI (Spearman's rho 0.2-0.6). Basal ganglia Glx and NAA, and frontal GABA+ and NAA concentrations were lower in preterm compared with term infants. Moderate preterm infants had lower metabolite concentrations than term and extreme preterm infants. Our findings emphasize the impact of premature extra-uterine stimuli on GABA-glutamate system development and may serve as early biomarkers of neurodevelopmental deficits.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children’s National Hospital, Washington, D.C., United States
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
| | - Subechhya Pradhan
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
| | - Yushuf M Sharker
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Kushal J Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Jonathan Murnick
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Taeun Chang
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Neurology, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Catherine A Lopez
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Nickie Andescavage
- Neonatology, Children’s National Hospital, Washington, D.C., United States
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Perinatal Pediatrics institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Adre J duPlessis
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Neurology, Children’s National Hospital, Washington, D.C. 20010, United States
- Perinatal Pediatrics institute, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. 20010, United States
- The George Washington University School of Medicine, Washington, D.C. 20037, United States
- Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, D.C. 20010, United States
| |
Collapse
|
7
|
Zuo CS, Lukas SE. Chronic cannabis use alters dACC-striatal glutamatergic balance. Pharmacol Biochem Behav 2023; 225:173544. [PMID: 37004979 PMCID: PMC10192043 DOI: 10.1016/j.pbb.2023.173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Prefrontal and striatal glutamate plays an important role in modulating striatal dopamine levels and an imbalance in regional glutamate has been identified in several psychiatric conditions. We hypothesized that this imbalance also exists in cannabis use disorder (CUD). We recently quantified the difference in glutamate of dorsal anterior cingulate (dACC) and striatum regions in the frontostriatal pathway using proton MRS at baseline and on verified abstinent days 7 and 21 in chronic users of cannabis (n = 20) in comparison with age- and sex- matched non-using controls (n = 10). In addition, the Barratt Impulsiveness Scale-11 (BIS) was collected as a measure of inhibitory impulse control of the participants. We found that the difference in glutamate concentrations between the dACC and striatum (ΔdACC-strGlu) of the controls was significantly higher than that of cannabis users across the study timeline (F(1,28) = 18.32, p < 0.0005). The group difference was not affected by age, sex, or alcohol/cigarette consumption. On abstinent day 7, ΔdACC-strGlu was significantly correlated with the corresponding ΔdACC-strGABA among the users (r = 0.837, p < 0.00001). On day 21, ΔdACC-strGlu was negatively associated with monthly cannabis use days (Spearman's rho = -0.444, p = 0.05). Self-reported BIS and its subscales were significantly altered among the users compared to the controls across the study timeline (total F(1,28) = 7.0, p = 0.013; non-planning F(1,28) = 16.1, p < 0.0005; motor F(1,28) = 5.9, p = 0.022; cognitive F(1,28) = 6.1, p = 0.019). These data provide preliminary evidence that chronic cannabis use may lead to a dACC-striatal glutamate imbalance in conjunction with poor impulse control.
Collapse
Affiliation(s)
- Chun S Zuo
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Scott E Lukas
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|