1
|
Vertulli D, Parillo M, Mallio CA. The Role of Neck Imaging Reporting and Data System (NI-RADS) in the Management of Head and Neck Cancers. Bioengineering (Basel) 2025; 12:398. [PMID: 40281758 PMCID: PMC12024659 DOI: 10.3390/bioengineering12040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
This review evaluates the current evidence on the use of the Neck Imaging Reporting and Data System (NI-RADS) for the surveillance and early detection of recurrent head and neck cancers. NI-RADS offers a standardized, structured framework specifically tailored for post-treatment imaging, aiding radiologists in differentiating between residual tumors, scar tissue, and post-surgical changes. NI-RADS demonstrated a strong diagnostic performance across multiple studies, with high sensitivity and specificity reported in detecting recurrent tumors at primary and neck sites. Despite these strengths, limitations persist, including a high frequency of indeterminate results and variability in di-agnostic concordance across imaging modalities (computed tomography, magnetic resonance imaging (MRI), positron emission tomography(PET)). The review also highlights the NI-RADS's reproducibility, showing high inter- and intra-reader agreements across different imaging techniques, although some modality-specific differences were observed. While it demonstrates strong diagnostic performance and good reproducibility across imaging modalities, attention is required to address indeterminate imaging findings and the limitations of modality-specific variations. Future studies should focus on integrating advanced imaging characteristics, such as diffusion-weighted imaging and PET/MRI fusion techniques, to further enhance NI-RADS's diagnostic accuracy. Continuous efforts to refine NI-RADS protocols and imaging interpretations will ensure more consistent detection of recurrences, ultimately improving clinical outcomes in head and neck cancer management.
Collapse
Affiliation(s)
- Daniele Vertulli
- Radiology Departement, Istituto Dermatologico dell’Immacolata IRCCS, 00167 Rome, Italy
| | - Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy;
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
2
|
Mirshahvalad SA, Farag A, Thiessen J, Wong R, Veit-Haibach P. Current Applications of PET/MR: Part I: Technical Basics and Preclinical/Clinical Applications. Can Assoc Radiol J 2024; 75:815-825. [PMID: 38813998 DOI: 10.1177/08465371241255903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Positron emission tomography/magnetic resonance (PET/MR) imaging has gone through major hardware improvements in recent years, making it a reliable state-of-the-art hybrid modality in clinical practice. At the same time, image reconstruction, attenuation correction, and motion correction algorithms have significantly evolved to provide high-quality images. Part I of the current review discusses technical basics, pre-clinical applications, and clinical applications of PET/MR in radiation oncology and head and neck imaging. PET/MR offers a broad range of advantages in preclinical and clinical imaging. In the preclinic, small and large animal-dedicated devices were developed, making PET/MR capable of delivering new insight into animal models in diseases and facilitating the development of methods that inform clinical PET/MR. Regarding PET/MR's clinical applications in radiation medicine, PET and MR already play crucial roles in the radiotherapy process. Their combination is particularly significant as it can provide molecular and morphological characteristics that are not achievable with other modalities. In addition, the integration of PET/MR information for therapy planning with linear accelerators is expected to provide potentially unique biomarkers for treatment guidance. Furthermore, in clinical applications in the head and neck region, it has been shown that PET/MR can be an accurate modality in head and neck malignancies for staging and resectability assessment. Also, it can play a crucial role in diagnosing residual or recurrent diseases, reliably distinguishing from oedema and fibrosis. PET/MR can furthermore help with tumour characterization and patient prognostication. Lastly, in head and neck carcinoma of unknown origin, PET/MR, with its diagnostic potential, may obviate multiple imaging sessions in the near future.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Adam Farag
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Jonathan Thiessen
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Medical Imaging, Western University, London, ON, Canada
| | - Rebecca Wong
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Becker M, de Vito C, Dulguerov N, Zaidi H. PET/MR Imaging in Head and Neck Cancer. Magn Reson Imaging Clin N Am 2023; 31:539-564. [PMID: 37741640 DOI: 10.1016/j.mric.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) can either be examined with hybrid PET/MR imaging systems or sequentially, using PET/CT and MR imaging. Regardless of the acquisition technique, the superiority of MR imaging compared to CT lies in its potential to interrogate tumor and surrounding tissues with different sequences, including perfusion and diffusion. For this reason, PET/MR imaging is preferable for the detection and assessment of locoregional residual/recurrent HNSCC after therapy. In addition, MR imaging interpretation is facilitated when combined with PET. Nevertheless, distant metastases and distant second primary tumors are detected equally well with PET/MR imaging and PET/CT.
Collapse
Affiliation(s)
- Minerva Becker
- Diagnostic Department, Division of Radiology, Unit of Head and Neck and Maxillofacial Radiology, Geneva University Hospitals, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland.
| | - Claudio de Vito
- Diagnostic Department, Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland
| | - Nicolas Dulguerov
- Department of Clinical Neurosciences, Clinic of Otorhinolaryngology, Head and Neck Surgery, Unit of Cervicofacial Surgery, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland
| | - Habib Zaidi
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland; Geneva University Neurocenter, University of Geneva, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Baba A, Kurokawa R, Kurokawa M, Yanagisawa T, Srinivasan A. Performance of Neck Imaging Reporting and Data System (NI-RADS) for Diagnosis of Recurrence of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. AJNR Am J Neuroradiol 2023; 44:1184-1190. [PMID: 37709352 PMCID: PMC10549942 DOI: 10.3174/ajnr.a7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The Neck Imaging Reporting and Data System (NI-RADS) is a reporting template used in head and neck cancer posttreatment follow-up imaging. PURPOSE Our aim was to evaluate the pooled detection rates of the recurrence of head and neck squamous cell carcinoma based on each NI-RADS category and to compare the diagnostic accuracy between NI-RADS 2 and 3 cutoffs. DATA SOURCES The MEDLINE, Scopus, and EMBASE databases were searched. STUDY SELECTION This systematic review identified 7 studies with a total of 694 patients (1233 lesions) that were eligible for the meta-analysis. DATA ANALYSIS The meta-analysis of pooled recurrence detection rate estimates for each NI-RADS category and the diagnostic accuracy of recurrence with NI-RADS 3 or 2 as the cutoff was performed. DATA SYNTHESIS The estimated recurrence rates in each category for primary lesions were 74.4% for NI-RADS 3, 29.0% for NI-RADS 2, and 4.2% for NI-RADS 1. The estimated recurrence rates in each category for cervical lymph nodes were 73.3% for NI-RADS 3, 14.3% for NI-RADS 2, and 3.5% for NI-RADS 1. The area under the curve of the summary receiver operating characteristic for recurrence detection with NI-RADS 3 as the cutoff was 0.887 and 0.983, respectively, higher than 0.869 and 0.919 for the primary sites and cervical lymph nodes, respectively, with NI-RADS 2 as the cutoff. LIMITATIONS Given the heterogeneity of the data of the studies, the conclusions should be interpreted with caution. CONCLUSIONS This meta-analysis revealed estimated recurrence rates for each NI-RADS category for primary lesions and cervical lymph nodes and showed that NI-RADS 3 has a high diagnostic performance for detecting recurrence.
Collapse
Affiliation(s)
- Akira Baba
- From the Division of Neuroradiology (A.B., R.K., M.K., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Department of Radiology (A.B.), The Jikei University School of Medicine, Tokyo, Japan
| | - Ryo Kurokawa
- From the Division of Neuroradiology (A.B., R.K., M.K., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Department of Radiology (R.K., M.K.), The University of Tokyo, Tokyo, Japan
| | - Mariko Kurokawa
- From the Division of Neuroradiology (A.B., R.K., M.K., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Department of Radiology (R.K., M.K.), The University of Tokyo, Tokyo, Japan
| | - Takafumi Yanagisawa
- Department of Urology (T.Y.), The Jikei University School of Medicine, Tokyo, Japan
| | - Ashok Srinivasan
- From the Division of Neuroradiology (A.B., R.K., M.K., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Wangaryattawanich P, Agarwal M, Rath TJ. PET/CT and PET/MRI Evaluation of Post-treatment Head and Neck. Semin Roentgenol 2023; 58:331-346. [PMID: 37507173 DOI: 10.1053/j.ro.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 02/09/2023]
Affiliation(s)
| | - Mohit Agarwal
- Medical Collegeof Wisconsin, Milwaukee, Wisconsin USA
| | | |
Collapse
|
6
|
Contemporary Imaging and Reporting Strategies for Head and Neck Cancer: MRI, FDG PET/MRI, NI-RADS, and Carcinoma of Unknown Primary- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2023; 220:160-172. [PMID: 36069482 DOI: 10.2214/ajr.22.28120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CT, MRI, and FDG PET/CT play major roles in the diagnosis, staging, treatment planning, and surveillance of head and neck cancers. Nonetheless, an evolving understanding of head and neck cancer pathogenesis, advances in imaging techniques, changing treatment regimens, and a lack of standardized guidelines have led to areas of uncertainty in the imaging of head and neck cancer. This narrative review aims to address four issues in the contemporary imaging of head and neck cancer. The first issue relates to the standard and advanced sequences that should be included in MRI protocols for head and neck cancer imaging. The second issue relates to approaches to surveillance imaging after treatment of head and neck cancer, including the choice of imaging modality, the frequency of surveillance imaging, and the role of standardized reporting through the Neck Imaging Reporting and Data System. The third issue relates to the role of imaging in the setting of neck carcinoma of unknown primary. The fourth issue relates to the role of simultaneous PET/MRI in head and neck cancer evaluation. The authors of this review provide consensus opinions for each issue.
Collapse
|