1
|
Kien NT, Duc TQ, Chi VTQ, Quang PN, Tuyen BTT, Hoa DTP. Declining trend in anemia prevalence among non-pregnant women of reproductive age in Vietnam over two decades: A systematic review and meta-analysis of population studies. Health Promot Perspect 2022; 12:231-239. [PMID: 36686045 PMCID: PMC9808904 DOI: 10.34172/hpp.2022.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Anaemia is a public health concern in developing nations, particularly among women of reproductive age. However, the present prevalence and recent trend in anaemia among this population are unclear. This systematic review aimed to evaluate the prevalence of anaemia among non-pregnant women in Vietnam. Methods: We systematically searched databases such as PubMed, Scopus, and reference lists of earlier prevalence studies from their inception until July 2022. For statistical analysis to check for heterogeneity, random or fixed effects models were employed to summarize the prevalence of anaemia. Visual examination of a funnel plot was used to determine the presence of publication bias, which was then verified using the Egger regression test. Subgroup analyses were also undertaken to evaluate how the proportion of anaemia differs across various study groups. Results: A total of 188 studies were found as a result of the bibliographical search. Finally, of the 12 included studies, anaemia affected 5089 non-pregnant women out of a total of 19744, making the prevalence of this condition 23.2% (95% CI: 16.1-32.2). From 1995 to 2013, the prevalence of anaemia in this population declined significantly, from 42.6% to 16.9%. Notably, the prevalence of anaemia among non-pregnant women differed by geography and increased by mountains, Northern Vietnam, rural areas, and ethnic minority groups. Furthermore, no publication bias was found in this meta-analysis. Conclusion: To enhance the health of women and meet global objectives for eliminating anaemia, more efforts are required in specific regions and ethnic minority groups in Vietnam.
Collapse
Affiliation(s)
- Nguyen Trung Kien
- Department of Obstetrics and Gynecology, Thai Binh University of Medicine and Pharmacy, Thai Binh, 06121, Vietnam
| | | | | | - Phan Ngoc Quang
- The Center Service for Technology Science of Medi-Phar, Thai Binh University of Medicine and Pharmacy, Thai Binh, 06121, Vietnam
| | - Bui Thi Thanh Tuyen
- Department of Obstetrics and Gynecology, Thai Binh University of Medicine and Pharmacy, Thai Binh, 06121, Vietnam
| | - Dinh Thi Phuong Hoa
- Faculty of Health and Environmental Sciences, Auckland University of Technology, 1010, Auckland
| |
Collapse
|
2
|
Cheng M, Wu H, Zhang W, Mu W. Difructose anhydride III: a 50-year perspective on its production and physiological functions. Crit Rev Food Sci Nutr 2021; 62:6714-6725. [PMID: 33775189 DOI: 10.1080/10408398.2021.1904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production and applications of difructose anhydride III (DFA-III) have attracted considerable attention because of its versatile physiological functions. Recently, large-scale production of DFA-III has been continuously explored, which opens a horizon for applications in the food and pharmaceutical industries. This review updates recent advances involving DFA-III, including: biosynthetic strategies, purification, and large-scale production of DFA-III; physiological functions of DFA-III and related mechanisms; DFA-III safety evaluations; present applications in food systems, existing problems, and further research prospects. Currently, enzymatic synthesis of DFA-III has been conducted both industrially and in academic research. Two biosynthetic strategies for DFA-III production are summarized: single- and double enzyme-mediated. DFA-III purification is achieved via yeast fermentation. Enzyme membrane bioreactors have been applied to meet the large-scale production demands for DFA-III. In addition, the primary physiological functions of DFA-III and their underlying mechanisms have been proposed. However, current applications of DFA-III are limited. Further research regarding DFA-III should focus on commercial production and purification, comprehensive study of physiological properties, extensive investigation of large-scale human experiments, and expansion of industrial applications. It is worthy to dig deep into potential application and commercial value of DFA-III.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Wan D, Wu Q, Ni H, Liu G, Ruan Z, Yin Y. Treatments for Iron Deficiency (ID): Prospective Organic Iron Fortification. Curr Pharm Des 2019; 25:325-332. [DOI: 10.2174/1381612825666190319111437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
Iron deficiency, one of the most common nutritional deficient disorders, frequently affects infants,
adolescents and pregnant women and impairs growth, development and immune responses. Iron deficiency may
also be secondary to gastrointestinal conditions such as gastrectomy and inflammatory bowel disease, as well as
cancer and chronic uremia. Iron supplementation is the most commonly selected treatment option for iron deficiency.
This review summarizes the iron compounds currently recommended for the iron fortification of foods
and for clinical use. Additionally, this review discusses and compares the important aspects of high-quality iron
compounds/products and classes of compounds that enhance iron bioavailability. The development of efficient
iron fortification methods remains the most cost-effective and long-term approach to the treatment of iron deficiency
or related anemia. To date, no orally administered options for iron fortification can sufficiently replace the
parenteral administration of iron supplements, which includes the intramuscular injection of iron-dextran to neonatal
piglets and intravenous injection of iron supplements to patients with gastrointestinal disorders. Iron
bioavailability may be enhanced by encouraging customers to ingest iron-enriched foods together with dietary
sources of vitamin C, folic acid and/or oligosaccharides.
Collapse
Affiliation(s)
- Dan Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hengjia Ni
- Academician Workstation of Hunan Baodong Farming Co. Ltd., Hunan 422001, China
| | - Gang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yulong Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Zhu Y, Wang X, Yu S, Zhang W, Zhang T, Jiang B, Mu W. Bioconversion of inulin to difructose anhydride III by a novel inulin fructotransferase from Arthrobacter chlorophenolicus A6. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Recent advances on biological production of difructose dianhydride III. Appl Microbiol Biotechnol 2018; 102:3007-3015. [DOI: 10.1007/s00253-018-8834-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/25/2022]
|
6
|
Cheng Y, Yu S, Zhu Y, Zhang T, Jiang B, Mu W. Formation of di- d -fructofuranose-1,2′:2,1′-dianhydride by three novel inulin fructotransferases from the Nocardiaceae family. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yu S, Wang X, Zhang T, Stressler T, Fischer L, Jiang B, Mu W. Identification of a Novel Di-D-Fructofuranose 1,2':2,3' Dianhydride (DFA III) Hydrolysis Enzyme from Arthrobacter aurescens SK8.001. PLoS One 2015; 10:e0142640. [PMID: 26555784 PMCID: PMC4640833 DOI: 10.1371/journal.pone.0142640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/23/2015] [Indexed: 12/02/2022] Open
Abstract
Previously, a di-D-fructofuranose 1,2’:2,3’ dianhydride (DFA III)-producing strain, Arthrobacter aurescens SK8.001, was isolated from soil, and the gene cloning and characterization of the DFA III-forming enzyme was studied. In this study, a DFA III hydrolysis enzyme (DFA IIIase)-encoding gene was obtained from the same strain, and the DFA IIIase gene was cloned and expressed in Escherichia coli. The SDS-PAGE and gel filtration results indicated that the purified enzyme was a homotrimer holoenzyme of 145 kDa composed of subunits of 49 kDa. The enzyme displayed the highest catalytic activity for DFA III at pH 5.5 and 55°C, with specific activity of 232 U mg-1. Km and Vmax for DFA III were 30.7 ± 4.3 mM and 1.2 ± 0.1 mM min-1, respectively. Interestingly, DFA III-forming enzymes and DFA IIIases are highly homologous in amino acid sequence. The molecular modeling and docking of DFA IIIase were first studied, using DFA III-forming enzyme from Bacillus sp. snu-7 as a template. It was suggested that A. aurescens DFA IIIase shared a similar three-dimensional structure with the reported DFA III-forming enzyme from Bacillus sp. snu-7. Furthermore, their catalytic sites may occupy the same position on the proteins. Based on molecular docking analysis and site-directed mutagenesis, it was shown that D207 and E218 were two potential critical residues for the catalysis of A. aurescens DFA IIIase.
Collapse
Affiliation(s)
- Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Xiao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Timo Stressler
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
- * E-mail:
| |
Collapse
|
8
|
Wang X, Yu S, Zhang T, Jiang B, Mu W. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3509-3515. [PMID: 25794105 DOI: 10.1021/jf506165n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.
Collapse
Affiliation(s)
- Xiao Wang
- †State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shuhuai Yu
- †State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Tao Zhang
- †State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Bo Jiang
- †State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- †State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
9
|
From fructans to difructose dianhydrides. Appl Microbiol Biotechnol 2014; 99:175-88. [PMID: 25431014 DOI: 10.1007/s00253-014-6238-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Fructans are the polymers of fructose molecules, normally having a sucrose unit at what would otherwise be the reducing terminus. Inulin and levan are two basic types of simple fructan, which contain β-(2, 1) and β-(2, 6) fructosyl-fructose linkage, respectively. Fructans not only can serve as soluble dietary fibers for food industry, but also may be biologically converted into high-value products, especially high-fructose syrup and fructo-oligosaccharides. In recent years, much attention has been focused on production of difructose dianhydrides (DFAs) from fructans. DFAs are cyclic disaccharides consisting of two fructose units with formation of two reciprocal glycosidic linkages. They are expected to have promising properties and beneficial effects on human health. DFAs can be produced from fructans by fructan fructotransferases. Inulin fructotransferase (IFTase) (DFA III-forming) and IFTase (DFA I-forming) catalyze the DFA III and DFA I production from inulin, respectively, and levan fructotransferase (LFTase) (DFA IV-forming) catalyzes the production of DFA IV from levan. In this article, the DFA-producing microorganisms are summarized, relevant studies on various DFAs-producing enzymes are reviewed, and especially, the comparisons of the enzymes are presented in detail.
Collapse
|