1
|
Fu M, Wang J, Xu D, Cao N, Li W, Li F, Liu Z, Li Y, Zhu C, Huang Y, Zhang X. Polysaccharide of Atractylodes macrocephala Koidz alleviates LPS-induced proliferation, differentiation inhibition and excessive apoptosis in chicken embryonic myogenic cells. Vet Med Sci 2024; 10:e1412. [PMID: 38504633 PMCID: PMC10951630 DOI: 10.1002/vms3.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.
Collapse
Affiliation(s)
- Mengsi Fu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jinhui Wang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Danning Xu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Nan Cao
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Wanyan Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Fada Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Zhiyuan Liu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yong Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Chenyu Zhu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yunmao Huang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Xumeng Zhang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
2
|
Saavedra D, Añé-Kourí AL, Barzilai N, Caruso C, Cho KH, Fontana L, Franceschi C, Frasca D, Ledón N, Niedernhofer LJ, Pereira K, Robbins PD, Silva A, Suarez GM, Berghe WV, von Zglinicki T, Pawelec G, Lage A. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing 2023; 20:25. [PMID: 37291596 PMCID: PMC10248980 DOI: 10.1186/s12979-023-00352-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.
Collapse
Affiliation(s)
- Danay Saavedra
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba.
| | - Ana Laura Añé-Kourí
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, United States
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
- Raydel Research Institute, Medical Innovation Complex, Seoul, Republic of Korea
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nuris Ledón
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | | | - Karla Pereira
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Paul D Robbins
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexa Silva
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Gisela M Suarez
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), University of Antwerp, Wilrijk, 2610, Belgium
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Agustín Lage
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| |
Collapse
|
3
|
Protective Effects of the Chalcone-Based Derivative AN07 on Inflammation-Associated Myotube Atrophy Induced by Lipopolysaccharide. Int J Mol Sci 2022; 23:ijms232112929. [PMID: 36361718 PMCID: PMC9655064 DOI: 10.3390/ijms232112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammation is a major cause of skeletal muscle atrophy in various diseases. 2-Hydroxy-4′-methoxychalcone (AN07) is a chalcone-based peroxisome-proliferator-activated receptor gamma (PPARγ) agonist with various effects, such as antiatherosclerosis, anti-inflammation, antioxidative stress, and neuroprotection. In this study, we examined the effects of AN07 on protein homeostasis pathway and mitochondrial function in inflammation-associated myotube atrophy induced by lipopolysaccharides (LPS). We found that AN07 significantly attenuated NF-κB activation, inflammatory factors (TNF-α, IL-1β, COX-2, and PGE2), Nox4 expression, and reactive oxygen species levels in LPS-treated C2C12 myotubes. Moreover, AN07 increased SOD2 expression and improved mitochondrial function, including mitochondrial membrane potential and mitochondrial oxygen consumption rate. We also demonstrated that AN07 attenuated LPS-induced reduction of myotube diameter, MyHC expression, and IGF-1/IGF-1R/p-Akt-mediated protein synthesis signaling. Additionally, AN07 downregulated LPS-induced autophagy–lysosomal protein degradation molecules (LC3-II/LC3-I and degraded p62) and ubiquitin–proteasome protein degradation molecules (n-FoxO1a/MuRF1/atrogin-1). However, the regulatory effects of AN07 on protein synthesis and degradation signaling were inhibited by the IGF-1R inhibitor AG1024 and the PI3K inhibitor wortmannin. In addition, the PPARγ antagonist GW9662 attenuated the effects of AN07 against LPS-induced inflammation, oxidation, and protein catabolism. In conclusion, our findings suggest that AN07 possesses protective effects on inflammation-induced myotube atrophy and mitochondrial dysfunction.
Collapse
|