1
|
Szijj PA, Gray MA, Ribi MK, Bahou C, Nogueira JCF, Bertozzi CR, Chudasama V. Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer. Nat Chem 2023; 15:1636-1647. [PMID: 37488375 PMCID: PMC10624612 DOI: 10.1038/s41557-023-01280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
Bispecific T cell engagers (BiTEs), a subset of bispecific antibodies (bsAbs), can promote a targeted cancer cell's death by bringing it close to a cytotoxic T cell. Checkpoint inhibitory T cell engagers (CiTEs) comprise a BiTE core with an added immunomodulatory protein, which serves to reverse cancer-cell immune-dampening strategies, improving efficacy. So far, protein engineering has been the main approach to generate bsAbs and CiTEs, but improved chemical methods for their generation have recently been developed. Homogeneous fragment-based bsAbs constructed from fragment antigen-binding regions (Fabs) can be generated using click chemistry. Here we describe a chemical method to generate biotin-functionalized three-protein conjugates, which include two CiTE molecules, one containing an anti-PD-1 Fab and the other containing an immunomodulatory enzyme, Salmonella typhimurium sialidase. The CiTEs' efficacy was shown to be superior to that of the simpler BiTE scaffold, with the sialidase-containing CiTE inducing substantially enhanced T cell-mediated cytotoxicity in vitro. The chemical method described here, more generally, enables the generation of multi-protein constructs with further biological applications.
Collapse
Affiliation(s)
- Peter A Szijj
- Department of Chemistry, University College London, London, UK
| | - Melissa A Gray
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mikaela K Ribi
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Calise Bahou
- Department of Chemistry, University College London, London, UK
| | | | - Carolyn R Bertozzi
- Department of Chemistry, Sarafan ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
2
|
Song L, Cao J, Chen L, Du Z, Zhang N, Cao D, Xiong B. Screening and optimization of phage display cyclic peptides against the WDR5 WBM site. RSC Med Chem 2023; 14:2048-2057. [PMID: 37859722 PMCID: PMC10583817 DOI: 10.1039/d3md00288h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Of the various WD40 family proteins, WDR5 is a particularly important multifunctional adaptor protein that can bind to several protein complexes to regulate gene activation, so it was considered as a promising epigenetic target in anti-cancer drug development. Despite many inhibitors having been discovered directing against the arginine-binding cavity in WDR5 called the WIN site, the side hydrophobic cavity called the WBM site receives rather scant attention. Herein, we aim to obtain novel WBM-targeted peptidic inhibitors with high potency and selectivity. We employed two improved biopanning approaches with a disulfide-constrained cyclic peptide phage library containing 7 randomized residues and identified several peptides with micromole binding activity by docking and binding assay. To further optimize the stability and activity, 9 thiol-reactive chemical linkers were utilized in the cyclization of the candidate peptide DH226027, which had good binding affinity. This study provides an effective method to discover potent peptides targeting protein-protein interactions and highlights a broader perspective of peptide-mimic drugs.
Collapse
Affiliation(s)
- Lingyu Song
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Jiawen Cao
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Naixia Zhang
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Bing Xiong
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| |
Collapse
|
3
|
Thoreau F, Szijj PA, Greene MK, Rochet LNC, Thanasi IA, Blayney JK, Maruani A, Baker JR, Scott CJ, Chudasama V. Modular Chemical Construction of IgG-like Mono- and Bispecific Synthetic Antibodies (SynAbs). ACS CENTRAL SCIENCE 2023; 9:476-487. [PMID: 36968530 PMCID: PMC10037451 DOI: 10.1021/acscentsci.2c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 06/18/2023]
Abstract
In recent years there has been rising interest in the field of protein-protein conjugation, especially related to bispecific antibodies (bsAbs) and their therapeutic applications. These constructs contain two paratopes capable of binding two distinct epitopes on target molecules and are thus able to perform complex biological functions (mechanisms of action) not available to monospecific mAbs. Traditionally these bsAbs have been constructed through protein engineering, but recently chemical methods for their construction have started to (re)emerge. While these have been shown to offer increased modularity, speed, and for some methods even the inherent capacity for further functionalization (e.g., with small molecule cargo), most of these approaches lacked the ability to include a fragment crystallizable (Fc) modality. The Fc component of IgG antibodies offers effector function and increased half-life. Here we report a first-in-class disulfide rebridging and click-chemistry-based method for the generation of Fc-containing, IgG-like mono- and bispecific antibodies. These are in the FcZ-(FabX)-FabY format, i.e., two distinct Fabs and an Fc, potentially all from different antibodies, attached in a homogeneous and covalent manner. We have dubbed these molecules synthetic antibodies (SynAbs). We have constructed a T cell-engager (TCE) SynAb, FcCD20-(FabHER2)-FabCD3, and have confirmed that it exhibits the expected biological functions, including the ability to kill HER2+ target cells in a coculture assay with T cells.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Peter A. Szijj
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Michelle K. Greene
- Patrick
G Johnston Centre for Cancer Research, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast BT9 7AEU.K.
| | - Léa N. C. Rochet
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Ioanna A. Thanasi
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Jaine K. Blayney
- Patrick
G Johnston Centre for Cancer Research, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast BT9 7AEU.K.
| | - Antoine Maruani
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - James R. Baker
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Christopher J. Scott
- Patrick
G Johnston Centre for Cancer Research, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast BT9 7AEU.K.
| | - Vijay Chudasama
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
4
|
Matsushita T, Maruyama N, Koyama T, Hatano K, Matsuoka K. Modification of Fab Fragments by Dibromopyridazinediones Carrying Mono- and Double-Biotin Functionalities. ACS OMEGA 2022; 7:34554-34562. [PMID: 36188280 PMCID: PMC9520716 DOI: 10.1021/acsomega.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
To verify the potencies of dibromopyridazinediones with mono- and double-biotin groups, the functions as cysteine-selective biotinylation reagents were evaluated through conjugation with a goat anti-mouse IgG Fab fragment as a functional protein model. The starting Fab was reduced with tris(2-carboxyethyl)phosphine to cleave the disulfide bond and then treated with the reagents. These reagents simultaneously introduced biotin groups into the reduced Fab and re-bridged the disulfide moiety. Furthermore, we demonstrated that the biotin-labeled Fabs were reactive to an antigen and streptavidin.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Naoto Maruyama
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
5
|
Bahou C, Chudasama V. The use of bromopyridazinedione derivatives in chemical biology. Org Biomol Chem 2022; 20:5879-5890. [PMID: 35373804 DOI: 10.1039/d2ob00310d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tools that facilitate the chemical modification of peptides and proteins are gaining an increasing amount of interest across many avenues of chemical biology as they enable a plethora of therapeutic, imaging and diagnostic applications. Cysteine residues and disulfide bonds have been highlighted as appealing targets for modification due to the highly homogenous nature of the products that can be formed through their site-selective modification. Amongst the reagents available for the site-selective modification of cysteine(s)/disulfide(s), pyridazinediones (PDs) have played a particularly important and enabling role. In this review, we outline the unique chemical features that make PDs especially well-suited to cysteine/disulfide modification on a wide variety of proteins and peptides, as well as provide context as to the problems solved (and applications enabled) by this technology.
Collapse
Affiliation(s)
- Calise Bahou
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Vijay Chudasama
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
6
|
Abstract
Bispecific antibodies (bsAbs) target two different epitopes. These are an up-and-coming class of biologics, with two such therapeutics (emicizumab and blinatumomab) FDA approved and on the market, and many more in clinical trials. While the first reported bsAbs were constructed by chemical methods, this approach has fallen out of favour with the advent of modern genetic engineering techniques and, nowadays, the vast majority of bsAbs are produced by protein engineering. However, in recent years, relying on innovations in the fields of bioconjugation and bioorthogonal click chemistry, new chemical methods have appeared that have the potential to be competitive with protein engineering techniques and, indeed, hold some advantages. These approaches offer modularity, reproducibility and batch-to-batch consistency, as well as the integration of handles, whereby additional cargo molecules can be attached easily, e.g. to generate bispecific antibody-drug conjugates. The linker between the antibodies/antibody fragments can also be easily varied, and new formats (types, defined by structural properties or by construction methodology) can be generated rapidly. These attributes offer the potential to revolutionize the field. Here, we review chemical methods for the generation of bsAbs, showing that the newest examples of these techniques are worthy competitors to the industry-standard expression-based strategies.
Collapse
|
7
|
Nogueira JCF, Paliashvili K, Bradford A, Di Maggio F, Richards DA, Day RM, Chudasama V. Functionalised thermally induced phase separation (TIPS) microparticles enabled for "click" chemistry. Org Biomol Chem 2020; 18:2215-2218. [PMID: 32150198 PMCID: PMC7362741 DOI: 10.1039/d0ob00106f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022]
Abstract
Due to their homogeneity, tuneable properties, low cost and ease of manufacture, thermally induced phase separation (TIPS) polymeric microparticles are emerging as an exciting class of injectable device for the treatment of damaged tissue or complex diseases, such as cancer. However, relatively little work has explored enhancing surface functionalisation of this system. Herein, we present the functionalisation of TIPS microparticles with both small molecules and an antibody fragment of Herceptin™, via a heterobifunctional pyridazinedione linker capable of participating in SPAAC "click" chemistry, and compare it to the traditional method of preparing active-targeted microparticle systems, that is, physisorption of antibodies to the microparticle surface. Antigen-binding assays demonstrated that functionalisation of microparticles with Herceptin Fab, via a pyridazinedione linker, provided an enhanced avidity to HER2+ when compared to traditional physisorption methods.
Collapse
Affiliation(s)
- João C F Nogueira
- UCL Chemistry Department, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Ketevan Paliashvili
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alexandra Bradford
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Francesco Di Maggio
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Daniel A Richards
- UCL Chemistry Department, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK. and The Discoveries Centre for Regenerative and Precision Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| | - Vijay Chudasama
- UCL Chemistry Department, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Dabiri M, Lehi NF, Osmani C, Movahed SK. Palladium-Catalyzed Direct ortho
-C-H Bond Sulfonylation and Halogenation of Phthalazine-1,4-diones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minoo Dabiri
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Noushin Farajinia Lehi
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Chiman Osmani
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| | - Siyavash Kazemi Movahed
- Faculty of Chemistry and Petroleum Sciences; Shahid Beheshti University; District 1, Daneshjou Boulevard 1983969411 Tehran Tehran Province Iran (Islamic Republic of)
| |
Collapse
|
9
|
Bahou C, Richards DA, Maruani A, Love EA, Javaid F, Caddick S, Baker JR, Chudasama V. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org Biomol Chem 2019; 16:1359-1366. [PMID: 29405223 PMCID: PMC6058253 DOI: 10.1039/c7ob03138f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report novel protocols for the generation and application of dibromopyridazinediones, an exciting class of disulfide bridging reagents.
Due to their exquisite cysteine-selectivity, excellent stability, and ability to functionally rebridge disulfide bonds, dibromopyridazinediones are emerging as an exciting new class of bioconjugation reagents, particularly in the field of antibody conjugation. Despite this, relatively little work has been performed on the optimisation of their synthesis and subsequent reaction with immunoglobulins. Herein we present a novel synthetic route towards functionalised dibromopyridazinediones, proceeding via an isolatable dibromopyridazinedione-NHS ester. Reaction of this activated intermediate with a variety of amines produces functional dibromopyridazinediones in good to excellent yields. The disulfide rebridging capacity of these reagents was optimised on the clinically relevant IgG1 trastuzumab, resulting in a general method which allows for the generation of site-selectively modified native trastuzumab with over 90% homogeneity (no disulfide scrambling) without the need for protein engineering or enzymatic conjugation.
Collapse
Affiliation(s)
- Calise Bahou
- Department of Chemistry, University College London, London, UK.
| | | | - Antoine Maruani
- Department of Chemistry, University College London, London, UK.
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK
| | - Faiza Javaid
- Department of Chemistry, University College London, London, UK.
| | - Stephen Caddick
- Department of Chemistry, University College London, London, UK.
| | - James R Baker
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK. and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Forte N, Chudasama V, Baker JR. Homogeneous antibody-drug conjugates via site-selective disulfide bridging. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:11-20. [PMID: 30553515 DOI: 10.1016/j.ddtec.2018.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Antibody-drug conjugates (ADCs) constructed using site-selective labelling methodologies are likely to dominate the next generation of these targeted therapeutics. To this end, disulfide bridging has emerged as a leading strategy as it allows the production of highly homogeneous ADCs without the need for antibody engineering. It consists of targeting reduced interchain disulfide bonds with reagents which reconnect the resultant pairs of cysteine residues, whilst simultaneously attaching drugs. The 3 main reagent classes which have been exemplified for the construction of ADCs by disulfide bridging will be discussed in this review; bissulfones, next generation maleimides and pyridazinediones, along with others in development.
Collapse
Affiliation(s)
- Nafsika Forte
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| | - James R Baker
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
11
|
Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2018; 25:43-59. [PMID: 30095185 DOI: 10.1002/chem.201803174] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.
Collapse
Affiliation(s)
- João M J M Ravasco
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Hélio Faustino
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Alexandre Trindade
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro M P Gois
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
12
|
Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat Chem 2018; 10:715-723. [DOI: 10.1038/s41557-018-0042-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/08/2018] [Indexed: 11/08/2022]
|
13
|
Greene MK, Richards DA, Nogueira JCF, Campbell K, Smyth P, Fernández M, Scott CJ, Chudasama V. Forming next-generation antibody-nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem Sci 2017; 9:79-87. [PMID: 29629076 PMCID: PMC5869316 DOI: 10.1039/c7sc02747h] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Enabling oriented installation of non-engineered antibody fragments on nanoparticle surfaces to create next-generation antibody–nanoparticle conjugates.
The successful development of targeted nanotherapeutics is contingent upon the conjugation of therapeutic nanoparticles to target-specific ligands, with particular emphasis being placed on antibody-based ligands. Thus, new methods that enable the covalent and precise installation of targeting antibodies to nanoparticle surfaces are greatly desired, especially those which do not rely on costly and time-consuming antibody engineering techniques. Herein we present a novel method for the highly controlled and oriented covalent conjugation of non-engineered antibody F(ab) fragments to PLGA–PEG nanoparticles using disulfide-selective pyridazinedione linkers and strain-promoted alkyne–azide click chemistry. Exemplification of this method with trastuzumab and cetuximab showed significant improvements in both conjugation efficiency and antigen binding capability, when compared to commonly employed strategies for antibody–nanoparticle construction. This new approach paves the way for the development of antibody-targeted nanomedicines with improved paratope availability, reproducibility and uniformity to enhance both biological activity and ease of manufacture.
Collapse
Affiliation(s)
- Michelle K Greene
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | | | | | - Katrina Campbell
- Institute for Global Food Security , School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Peter Smyth
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | - Marcos Fernández
- Department of Chemistry , University College London , London , UK .
| | - Christopher J Scott
- Centre for Cancer Research and Cell Biology , School of Medicine , Dentistry and Biomedical Sciences , Queen's University Belfast , Belfast , UK .
| | - Vijay Chudasama
- Department of Chemistry , University College London , London , UK . .,Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
14
|
Dovgan I, Ursuegui S, Erb S, Michel C, Kolodych S, Cianférani S, Wagner A. Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy. Bioconjug Chem 2017; 28:1452-1457. [PMID: 28443656 DOI: 10.1021/acs.bioconjchem.7b00141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a plug-and-play strategy for the preparation of functionally enhanced antibodies with a defined average degree of conjugation (DoC). The first stage (plug) allows the controllable and efficient installation of azide groups on lysine residues of a native antibody using 4-azidobenzoyl fluoride. The second step (play) allows for versatile antibody functionalization with a single payload or combination of payloads, such as a toxin, a fluorophore, or an oligonucleotide, via copper-free strain-promoted azide-alkyne cycloaddition (SPAAC). It is notable that in comparison to a classical N-hydroxysuccinimide ester (NHS) strategy, benzoyl fluorides show faster and more efficient acylation of lysine residues in a PBS buffer. This translates into better control of the DoC and enables the efficient and fast functionalization of delicate biomolecules at low temperature.
Collapse
Affiliation(s)
- Igor Dovgan
- Laboratory of Functional ChemoSystems (UMR 7199), LabEx Medalis, University of Strasbourg , 67087 Strasbourg, France
| | - Sylvain Ursuegui
- Laboratory of Functional ChemoSystems (UMR 7199), LabEx Medalis, University of Strasbourg , 67087 Strasbourg, France
| | - Stéphane Erb
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg , 25 rue Becquerel, 67087 Strasbourg, France
| | - Chloé Michel
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg , 25 rue Becquerel, 67087 Strasbourg, France.,IPHC, CNRS, UMR7178, University of Strasbourg , 67087 Strasbourg, France
| | - Alain Wagner
- Laboratory of Functional ChemoSystems (UMR 7199), LabEx Medalis, University of Strasbourg , 67087 Strasbourg, France
| |
Collapse
|
15
|
Lee MTW, Maruani A, Richards DA, Baker JR, Caddick S, Chudasama V. Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering. Chem Sci 2017; 8:2056-2060. [PMID: 28451324 PMCID: PMC5399535 DOI: 10.1039/c6sc03655d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
The generation of antibody conjugates with a loading of two modules is desirable for a host of reasons. Whilst certain antibody engineering approaches have been useful in the preparation of such constructs, a reliable method based on a native antibody scaffold without the use of enzymes or harsh oxidative conditions has hitherto not been achieved. The use of native antibodies has several advantages in terms of cost, practicality, accessibility, time and overall efficiency. Herein we present a novel, reliable method of furnishing antibody conjugates with a loading of two modules starting from a native antibody scaffold.
Collapse
Affiliation(s)
- Maximillian T W Lee
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Stephen Caddick
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| |
Collapse
|
16
|
Robinson E, Nunes JPM, Vassileva V, Maruani A, Nogueira JCF, Smith MEB, Pedley RB, Caddick S, Baker JR, Chudasama V. Pyridazinediones deliver potent, stable, targeted and efficacious antibody–drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC Adv 2017. [DOI: 10.1039/c7ra00788d] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delivering potent, stable, targeted and in vivo efficacious antibody–drug conjugates (ADCs) using pyridazinedione functional disulfide re-bridging reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James R. Baker
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
17
|
Kuan SL, Wang T, Weil T. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome. Chemistry 2016; 22:17112-17129. [PMID: 27778400 PMCID: PMC5600100 DOI: 10.1002/chem.201602298] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/06/2023]
Abstract
The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tao Wang
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031P.R. China
| | - Tanja Weil
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
18
|
Maruani A, Richards DA, Chudasama V. Dual modification of biomolecules. Org Biomol Chem 2016; 14:6165-78. [PMID: 27278999 DOI: 10.1039/c6ob01010e] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the advent of novel bioorthogonal reactions and "click" chemistry, an increasing number of strategies for the single labelling of proteins and oligonucleotides have emerged. Whilst several methods exist for the site-selective introduction of a single chemical moiety, site-selective and bioorthogonal dual modification of biomolecules remains a challenge. The introduction of multiple modules enables a plethora of permutations and combinations and can generate a variety of bioconjuguates with many potential applications. From de novo approaches on oligomers to the post-translational functionalisation of proteins, this review will highlight the main strategies to dually modify biomolecules.
Collapse
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK.
| | | | | |
Collapse
|