1
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
2
|
Hao YN, Yu M, Wang KH, Zhu BB, Wang ZW, Liu YX, Ma DJ, Wang QM. Discovery of glyantrypine-family alkaloids as novel antiviral and antiphytopathogenic-fungus agents. PEST MANAGEMENT SCIENCE 2022; 78:982-990. [PMID: 34761501 DOI: 10.1002/ps.6709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant diseases caused by viruses and fungi have caused great losses to crop quality and yield. The discovery of novel and efficient antiviral and antiphytopathogenic-fungus agents is urgently needed. It is the most important pesticide innovation strategy to find active compounds from natural products. Here, glyantrypine-family alkaloids were taken as the parent structures and a series of their derivatives were designed through molecular splicing, ring expansion, and ring contraction strategies, and synthesized. The anti-tobacco mosaic virus (TMV) activities and antifungal activities of these alkaloids were systematically investigated for the first time. RESULT The antiviral activities of compounds 7bb, 7bc, 11c, 18b, 18d, 28d, and 28e are equivalent to or better than that of ribavirin (inhibitory rates 39%, 37%, and 40% at 500 μg mL-1 for inactivation, curative, and protection activity in vivo, respectively). Compounds 18d and 28d with good antiviral activities were selected for antiviral mode of action studies, which indicated that these alkaloids could achieve good antiviral effects by inhibiting TMV particle extension during assembly. These compounds also exhibited broad-spectrum fungicidal activities. CONCLUSION Glyantrypine-family alkaloids and their derivatives were synthesized and evaluated for anti-TMV and fungicidal activities for the first time. Compounds 18d and 28d with excellent antiviral activities and compound 7bc with remarkable fungicidal activity emerged as novel lead compounds. This study lays a foundation for the application of glyantrypine alkaloids in plant protection.
Collapse
Affiliation(s)
- Ya-Nan Hao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Mo Yu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Kai-Hua Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Bin-Bing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Zi-Wen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Yu-Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - De-Jun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Cai ZQ, Zhao CK, Li MY, Shuai XM, Ding HG, Wang QL, Fu J, Jin ZS, Li S, Zhao LJ. Synthesis, crystal structure and biological activity of 6-(3-chloropropoxy)-4-(2-fluorophenylamino)-7-methoxyquinazoline. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819841831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The title compound, 6-(3-chloropropoxy)-4-(2-fluorophenylamino)-7-methoxyquinazoline, was synthesized by selective nucleophilic attack at C-1 of 1-bromo-3-chloropropane by the potassium salt of 4-(2-fluorophenylamino)-7-methoxyquinazolin-6-ol, which was prepared from 7-methoxy-4-oxo-3,4-dihydroquinazolin-6-yl acetate in three steps. The compound crystallized as an ethyl acetate complex (C20H21ClFN3O3, Mr = 405.85), and X-ray crystallography showed that the crystal belongs to the orthorhombic system, space group Pbca with a = 12.7407(4) Å, b = 14.0058(5) Å, c = 21.7726(7) Å, α = 90°, β = 90° and γ = 90°. The whole molecule is stacked into a three-dimensional structure via weak N–H…N hydrogen bonding between molecules. The compound acts as an effective inhibitor on the proliferation of a lung cancer cell line.
Collapse
Affiliation(s)
- Zhi-Qiang Cai
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Chen-kang Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Meng-Yao Li
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Xiao-Min Shuai
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Hai-Guan Ding
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Qing-Lin Wang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Jia Fu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Zheng-Sheng Jin
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Shuai Li
- Key Laboratory for Chemical Drug Research of Shandong Province, Institute of Pharmaceutical Sciences of Shandong Province, Jinan, P.R. China
| | - Le-Jing Zhao
- Jinzhou Jiutai Pharmaceutical Co., Ltd, Jinzhou, P.R. China
| |
Collapse
|