1
|
Chen X, Xu Q, Duan Y, Liu H, Chen X, Huang J, Luo C, Zhou DX, Zheng L. Ustilaginoidea virens modulates lysine 2-hydroxyisobutyrylation in rice flowers during infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1801-1814. [PMID: 34245484 DOI: 10.1111/jipb.13149] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The post-translational modification lysine 2-hydroxyisobutyrylation (Khib ) plays an important role in gene transcription, metabolism, and enzymatic activity. Khib sites have been identified in rice (Oryza sativa). However, the Khib status of proteins in rice flowers during pathogen infection remains unclear. Here, we report a comprehensive identification of Khib -modified proteins in rice flowers, and the changes in these proteins during infection with the fungal pathogen Ustilaginoidea virens. By using a tandem mass tag-based quantitative proteomics approach, we identified 2,891 Khib sites on 964 proteins in rice flowers. Our data demonstrated that 2-hydroxyisobutyrylated proteins are involved in diverse biological processes. Khib levels were substantially reduced upon infection with U. virens. Chromatin immunoprecipitation polymerase chain reaction (PCR) and reverse transcription quantitative PCR analyses revealed that histone Khib is involved in the expression of disease-resistance genes. More importantly, most quantified sites on core histones H3 were downregulated upon U. virens infection. In addition, the histone deacetylases HDA705, HDA716, SRT1, and SRT2 are involved in the removal of Khib marks in rice. HDA705 was further confirmed to negatively regulate rice disease resistance to pathogens U. virens, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae (Xoo). Our data suggest that U. virens could modulate Khib in rice flowers during infection.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:110-117. [PMID: 31563091 DOI: 10.1016/j.plaphy.2019.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 05/27/2023]
Abstract
Pathogen recognition is linked to the perception of microbe/pathogen-associated molecular patterns triggering a specific and transient accumulation of reactive oxygen species (ROS) at the pathogen attack site. The apoplastic oxidative "burst" generated at the pathogen attack site depends on the ROS-generator systems including enzymes such as plasma membrane NADP (H) oxidases, cell wall peroxidases and lipoxygenase. ROS are cytotoxic molecules that inhibit invading pathogens or signalling molecules that control the local and systemic induction of defence genes. Post-translational modifications induced by ROS are considered as a potential signalling mechanism that can modify protein structure and/or function, localisation and cellular stability. Thus, this review focuses on how ROS are essential molecules regulating the function of proteins involved in the plant response to a pathogen attack through post-translational modifications.
Collapse
Affiliation(s)
- D Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain; Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Guzmán-Cedeño
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador; University, School of Agriculture and Livestock, ULEAM-MES, Ecuador.
| | - L Vera-Macias
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain.
| |
Collapse
|
3
|
Hao Q, Wang W, Han X, Wu J, Lyu B, Chen F, Caplan A, Li C, Wu J, Wang W, Xu Q, Fu D. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. MOLECULAR PLANT PATHOLOGY 2018; 19:1995-2010. [PMID: 29517854 PMCID: PMC6638154 DOI: 10.1111/mpp.12675] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays an important role in signal transduction and disease resistance. In Arabidopsis, SA can be made by either of two biosynthetic branches, one involving isochorismate synthase (ICS) and the other involving phenylalanine ammonia-lyase (PAL). However, the biosynthetic pathway and the importance of SA remain largely unknown in Triticeae. Here, we cloned one ICS and seven PAL genes from barley, and studied their functions by their overexpression and suppression in that plant. Suppression of the ICS gene significantly delayed plant growth, whereas PAL genes, both overexpressed and suppressed, had no significant effect on plant growth. Similarly, suppression of ICS compromised plant resistance to Fusarium graminearum, whereas similar suppression of PAL genes had no significant effect. We then focused on transgenic plants with ICS. In a leaf-based test with F. graminearum, transgenic plants with an up-regulated ICS were comparable with wild-type control plants. By contrast, transgenic plants with a suppressed ICS lost the ability to accumulate SA during pathogen infection and were also more susceptible to Fusarium than the wild-type controls. This suggests that ICS plays a unique role in SA biosynthesis in barley, which, in turn, confers a basal resistance to F. graminearum by modulating the accumulation of H2 O2 , O2- and reactive oxygen-associated enzymatic activities. Although SA mediates systemic acquired resistance (SAR) in dicots, there was no comparable SAR response to F. graminearum in barley. This study expands our knowledge about SA biosynthesis in barley and proves that SA confers basal resistance to fungal pathogens.
Collapse
Affiliation(s)
- Qunqun Hao
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Wenqiang Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Xiuli Han
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Present address:
College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jingzheng Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Bo Lyu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Fengjuan Chen
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
| | - Allan Caplan
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Caixia Li
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Jiajie Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Wei Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Qian Xu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Daolin Fu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
- Center for Reproductive BiologyWashington State UniversityPullmanWA99164USA
| |
Collapse
|