1
|
Ganapathiraju MK, Bhatia T, Deshpande S, Wesesky M, Wood J, Nimgaonkar VL. Schizophrenia Interactome-Derived Repurposable Drugs and Randomized Controlled Trials of Two Candidates. Biol Psychiatry 2024; 96:651-658. [PMID: 38950808 DOI: 10.1016/j.biopsych.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
There is a substantial unmet need for effective and patient-acceptable drugs to treat severe mental illnesses such as schizophrenia (SZ). Computational analysis of genomic, transcriptomic, and pharmacologic data generated in the past 2 decades enables repurposing of drugs or compounds with acceptable safety profiles, namely those that are U.S. Food and Drug Administration approved or have reached late stages in clinical trials. We developed a rational approach to achieve this computationally for SZ by studying drugs that target the proteins in its protein interaction network (interactome). This involved contrasting the transcriptomic modulations observed in the disorder and the drug; our analyses resulted in 12 candidate drugs, 9 of which had additional supportive evidence whereby their target networks were enriched for pathways relevant to SZ etiology or for genes that had an association with diseases pathogenically similar to SZ. To translate these computational results to the clinic, these shortlisted drugs must be tested empirically through randomized controlled trials, in which their previous safety approvals obviate the need for time-consuming phase 1 and 2 studies. We selected 2 among the shortlisted candidates based on likely adherence and side-effect profiles. We are testing them through adjunctive randomized controlled trials for patients with SZ or schizoaffective disorder who experienced incomplete resolution of psychotic features with conventional treatment. The integrated computational analysis for identifying and ranking drugs for clinical trials can be iterated as additional data are obtained. Our approach could be expanded to enable disease subtype-specific drug discovery in the future and should also be exploited for other psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania; Carnegie Mellon University in Qatar, Doha, Qatar.
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, ABVIMS - Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Koramangala, Bengaluru, Karnataka, India
| | - Maribeth Wesesky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Jankowska U, Skupien-Rabian B, Swiderska B, Prus G, Dziedzicka-Wasylewska M, Kedracka-Krok S. Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochem Res 2021; 46:2097-2111. [PMID: 34024016 PMCID: PMC8254727 DOI: 10.1007/s11064-021-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells’ proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-β1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.
Collapse
Affiliation(s)
- Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Gabriela Prus
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| |
Collapse
|
3
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Lo LH, Shiea J, Huang TL. Rapid detection of alteration of serum IgG in patients with schizophrenia after risperidone treatment by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2645-2649. [PMID: 27699909 DOI: 10.1002/rcm.7753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The aim of the study was to use a technique that combines acid hydrolysis and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) in order to detect the serum biomarkers of patients diagnosed with schizophrenia both before and after four-week antipsychotic treatment with risperidone. METHODS During this study's two-year period, inpatients were diagnosed with schizophrenia using the Structured Clinical Interview for DSM-IV Axis I Disorders. Severity was then evaluated using the Positive and Negative Syndrome Scale both at baseline and at endpoint following four-week treatment with risperidone. The patients' serum biomarkers were quickly measured using acid hydrolysis and MALDI-TOF MS. The resulting peptides were then analyzed using MALDI-TOF MS. We constructed a receiver operating characteristic (ROC) curve for the evaluated biomarkers. RESULTS We recruited 20 pairs of participants for this study. The experimental group was treated with serum protein with HCl for 10 minutes to effectively hydrolyze abundant proteins. The target peptide, the immunoglobulin gamma chain (IgG), was then rapidly detected using this manner. A significant difference was found in the IgG levels of patients with schizophrenia before and after antipsychotic treatment. We constructed a ROC curve based on the IgG, and the area under said curve was 0.969. In comparison to conventional detection protocols, this method takes only minutes to complete and is also less costly. CONCLUSIONS This study found that applying acid hydrolysis with MALDI-TOF MS technology could rapidly differentiate serum IgG levels in patients with schizophrenia before and after being treated with risperidone. This IgG difference may enhance the understanding of mechanism of antipsychotic treatment of schizophrenia. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Li-Hua Lo
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Kleinloog D, Uit den Boogaard A, Dahan A, Mooren R, Klaassen E, Stevens J, Freijer J, van Gerven J. Optimizing the glutamatergic challenge model for psychosis, using S+ -ketamine to induce psychomimetic symptoms in healthy volunteers. J Psychopharmacol 2015; 29:401-13. [PMID: 25693889 DOI: 10.1177/0269881115570082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The psychomimetic effects that occur after acute administration of ketamine can constitute a model of psychosis and antipsychotic drug action. However, the optimal dose/concentration has not been established and there is a large variety in outcome measures. In this study, 36 healthy volunteers (21 males and 15 females) received infusions of S(+)-ketamine or placebo to achieve pseudo-steady state concentrations of 180 and 360 ng/mL during two hours. The target of 360 ng/mL induced increasingly more intensive effects than expected, and the targets were subsequently reduced to 120 and 240 ng/mL, which were considered tolerable. There was a clear, concentration-dependent psychomimetic effect as shown on all subscales of the positive and negative syndrome scale (e.g. positive subscale +43.7%, 95%CI 34.4-53.7%, p < 0.0001 for 120 ng/mL and +70.5%, 95%CI 59.0-82.8%, p < 0.0001 for 240 ng/mL) and different visual analogue scales. The startle reflex was inhibited (prepulse inhibition) by both main target concentrations to a similar extent, suggesting a maximum effect. Ketamine was found to constitute a robust model for induction of psychomimetic symptoms and the optimal concentration range for a drug interaction study would be between 100 and 200 ng/mL.
Collapse
Affiliation(s)
| | | | - Albert Dahan
- Leiden University Medical Centre, Leiden, The Netherlands
| | - René Mooren
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Jan Freijer
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Joop van Gerven
- Centre for Human Drug Research, Leiden, The Netherlands Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|