2
|
Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 2020; 73:43-56. [PMID: 33125677 PMCID: PMC7862529 DOI: 10.1007/s43440-020-00177-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.
Collapse
|
3
|
Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:65-72. [PMID: 32699506 PMCID: PMC7365295 DOI: 10.31887/dcns.2020.22.1/macrocq] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article describes the history of the diagnostic class of neurodevelopmental disorders (NDDs) up to DSM-5. We further analyze how the development of genetics will transform the classification and diagnosis of NDDs. In DSM-5, NDDs include intellectual disability (ID), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD). Physicians in German-, French- and English-speaking countries (eg, Weikard, Georget, Esquirol, Down, Asperger, and Kanner) contributed to the phenomenological definitions of these disorders throughout the 18th and 20th centuries. These diagnostic categories show considerable comorbidity and phenotypic overlap. NDDs are one of the chapters of psychiatric nosology most likely to benefit from the approach advocated by the National Institute of Mental Health's Research Domain Criteria project. Genetic research supports the hypothesis that ID, ASD, ADHD, schizophrenia, and bipolar disorder lie on a neurodevelopmental continuum. The identification of recurrently observed copy number variants and disruptive gene variants in ASD (eg, CDH8, 16p11.2, SCN2A) led to the adoption of the genotype-first approach to characterize individuals at the etiological level.
.
Collapse
Affiliation(s)
- Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK; NHLI, Imperial College London, UK
| | - Marc-Antoine Crocq
- Centre Hospitalier, Rouffach, France; CAMUHA, Université de Haute-Alsace, Mulhouse, France
| |
Collapse
|
4
|
Douw L, van Dellen E, Gouw AA, Griffa A, de Haan W, van den Heuvel M, Hillebrand A, Van Mieghem P, Nissen IA, Otte WM, Reijmer YD, Schoonheim MM, Senden M, van Straaten ECW, Tijms BM, Tewarie P, Stam CJ. The road ahead in clinical network neuroscience. Netw Neurosci 2019; 3:969-993. [PMID: 31637334 PMCID: PMC6777944 DOI: 10.1162/netn_a_00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Clinical network neuroscience, the study of brain network topology in neurological and psychiatric diseases, has become a mainstay field within clinical neuroscience. Being a multidisciplinary group of clinical network neuroscience experts based in The Netherlands, we often discuss the current state of the art and possible avenues for future investigations. These discussions revolve around questions like "How do dynamic processes alter the underlying structural network?" and "Can we use network neuroscience for disease classification?" This opinion paper is an incomplete overview of these discussions and expands on ten questions that may potentially advance the field. By no means intended as a review of the current state of the field, it is instead meant as a conversation starter and source of inspiration to others.
Collapse
Affiliation(s)
- Linda Douw
- Department of Anatomy and Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Alida A. Gouw
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alessandra Griffa
- Connectome Lab, Department of Neuroscience, section Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Willem de Haan
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martijn van den Heuvel
- Connectome Lab, Department of Neuroscience, section Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Ida A. Nissen
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Willem M. Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yael D. Reijmer
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Menno M. Schoonheim
- Department of Anatomy and Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mario Senden
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elisabeth C. W. van Straaten
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Prejaas Tewarie
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|