1
|
Sayfullin RF, Zvereva NN, Saifullin МА, Smetanina SV, Kardonova EV, Shamsheva OV. Detection of antibodies to <i>B. burgdorferi</i> by enzyme immunoassay in patients with Lyme borreliosis. CHILDREN INFECTIONS 2022. [DOI: 10.22627/2072-8107-2022-21-4-32-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The detection of antibodies to borrelia by enzyme immunoassay (ELISA) significantly depends on the time from the onset of the disease.Purpose: analysis of the results of antibodies determination to borrelia by ELISA in children and adults with Lyme borreliosis (LB) at various periods from the onset of the disease.Material and methods. We conducted a retrospective, non-randomized, single-center cohort study, based on the analysis of data from 178 outpatient records of patients with a confirmed diagnosis of LB and the presence of antibody detection results by ELISA. Immunological confirmation of the diagnosis of LB was carried out by using ELISA and western blot test systems registered in the territory of the Russian Federation for the separate determination of immunoglobulins to Borrelia burgdorferi antigens of classes M and G. Results. When counting from the date of the onset of the disease, IgM and/or IgG were determined in 76% of patients at 4-6 weeks, and starting from the 7th week – in 95%. When counting from the date of tick bite, IgG with or without IgM was determined in 83% of patients starting from 7th week. At the same time, a significantly large proportion of seronegative patients among children was revealed. We have clarified the duration of antibody persistence after antibacterial therapy. In the interval from 1 to 6 months, antibodies are detected in 73% of patients. For a period of 6 months or more, antibodies can be detected in 42% of patients.Conclusion. The optimal time for detecting antibodies from the disease onset is 4-6 weeks. Antibodies after antibiotic therapy can persist for a long time, in a third of patients up to 6 months or more.
Collapse
Affiliation(s)
| | - N. N. Zvereva
- Pirogov Russian National Research Medical University
| | | | | | - E. V. Kardonova
- Pirogov Russian National Research Medical University; Moscow Healthcare Department
| | | |
Collapse
|
2
|
Haslund-Gourley BS, Grauzam S, Mehta AS, Wigdahl B, Comunale MA. Acute lyme disease IgG N-linked glycans contrast the canonical inflammatory signature. Front Immunol 2022; 13:949118. [PMID: 35990620 PMCID: PMC9389449 DOI: 10.3389/fimmu.2022.949118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Lyme disease (LD) infection is caused by Borrelia burgdorferi sensu lato (Bb). Due to the limited presence of this pathogen in the bloodstream in humans, diagnosis of LD relies on seroconversion. Immunoglobulins produced in response to infection are differentially glycosylated to promote or inhibit downstream inflammatory responses by the immune system. Immunoglobulin G (IgG) N-glycan responses to LD have not been characterized. In this study, we analyzed IgG N-glycans from cohorts of healthy controls, acute LD patient serum, and serum collected after acute LD patients completed a 2- to 3-week course of antibiotics and convalesced for 70-90 days. Results indicate that during the acute phase of Bb infection, IgG shifts its glycosylation profile to include structures that are not associated with the classic proinflammatory IgG N-glycan signature. This unexpected result is in direct contrast to what is reported for other inflammatory diseases. Furthermore, IgG N-glycans detected during acute LD infection discriminated between control, acute, and treated cohorts with a sensitivity of 75-100% and specificity of 94.7-100%.
Collapse
Affiliation(s)
- Benjamin Samuel Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Stéphane Grauzam
- GlycoPath, LLC Charleston, SC, United States
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Anand S. Mehta
- GlycoPath, LLC Charleston, SC, United States
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Mary Ann Comunale,
| |
Collapse
|
3
|
Servellita V, Bouquet J, Rebman A, Yang T, Samayoa E, Miller S, Stone M, Lanteri M, Busch M, Tang P, Morshed M, Soloski MJ, Aucott J, Chiu CY. A diagnostic classifier for gene expression-based identification of early Lyme disease. COMMUNICATIONS MEDICINE 2022; 2:92. [PMID: 35879995 PMCID: PMC9306241 DOI: 10.1038/s43856-022-00127-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background Lyme disease is a tick-borne illness that causes an estimated 476,000 infections annually in the United States. New diagnostic tests are urgently needed, as existing antibody-based assays lack sufficient sensitivity and specificity. Methods Here we perform transcriptome profiling by RNA sequencing (RNA-Seq), targeted RNA-Seq, and/or machine learning-based classification of 263 peripheral blood mononuclear cell samples from 218 subjects, including 94 early Lyme disease patients, 48 uninfected control subjects, and 57 patients with other infections (influenza, bacteremia, or tuberculosis). Differentially expressed genes among the 25,278 in the reference database are selected based on ≥1.5-fold change, ≤0.05 p value, and ≤0.001 false-discovery rate cutoffs. After gene selection using a k-nearest neighbor algorithm, the comparative performance of ten different classifier models is evaluated using machine learning. Results We identify a 31-gene Lyme disease classifier (LDC) panel that can discriminate between early Lyme patients and controls, with 23 genes (74.2%) that have previously been described in association with clinical investigations of Lyme disease patients or in vitro cell culture and rodent studies of Borrelia burgdorferi infection. Evaluation of the LDC using an independent test set of samples from 63 subjects yields an overall sensitivity of 90.0%, specificity of 100%, and accuracy of 95.2%. The LDC test is positive in 85.7% of seronegative patients and found to persist for ≥3 weeks in 9 of 12 (75%) patients. Conclusions These results highlight the potential clinical utility of a gene expression classifier for diagnosis of early Lyme disease, including in patients negative by conventional serologic testing.
Collapse
Affiliation(s)
- Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, CA USA
| | - Jerome Bouquet
- Department of Laboratory Medicine, University of California, San Francisco, CA USA
| | - Alison Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Ting Yang
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Erik Samayoa
- Department of Laboratory Medicine, University of California, San Francisco, CA USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California, San Francisco, CA USA
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, CA USA
| | | | - Michael Busch
- Blood Systems Research Institute, San Francisco, CA USA
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC Canada
| | - Mark J. Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - John Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA USA
| |
Collapse
|
4
|
De la Hoz-Gómez A, Rumbo-Romero JA. Panuveítis no granulomatosa en un paciente colombiano:. IATREIA 2020. [DOI: 10.17533/udea.iatreia.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Cox BC, Mauermann ML, Theel ES, Toledano M. Clinical Reasoning: Multifocal neuropathies in a patient with Waldenstrom macroglobulinemia and prior borreliosis. Neurology 2020; 95:44-48. [PMID: 32527969 DOI: 10.1212/wnl.0000000000009741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Benjamin C Cox
- From the Departments of Neurology (B.C.C., M.L.M., M.T.) and Laboratory Medicine and Pathology (E.S.T.), Mayo Clinic, Rochester, MN.
| | - Michelle L Mauermann
- From the Departments of Neurology (B.C.C., M.L.M., M.T.) and Laboratory Medicine and Pathology (E.S.T.), Mayo Clinic, Rochester, MN
| | - Elitza S Theel
- From the Departments of Neurology (B.C.C., M.L.M., M.T.) and Laboratory Medicine and Pathology (E.S.T.), Mayo Clinic, Rochester, MN
| | - Michel Toledano
- From the Departments of Neurology (B.C.C., M.L.M., M.T.) and Laboratory Medicine and Pathology (E.S.T.), Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Joung HA, Ballard ZS, Wu J, Tseng DK, Teshome H, Zhang L, Horn EJ, Arnaboldi PM, Dattwyler RJ, Garner OB, Di Carlo D, Ozcan A. Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a Multiplexed Paper-Based Immunoassay and Machine Learning. ACS NANO 2020; 14:229-240. [PMID: 31849225 DOI: 10.1021/acsnano.9b08151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Caused by the tick-borne spirochete Borrelia burgdorferi, Lyme disease (LD) is the most common vector-borne infectious disease in North America and Europe. Though timely diagnosis and treatment are effective in preventing disease progression, current tests are insensitive in early stage LD, with a sensitivity of <50%. Additionally, the serological testing currently recommended by the U.S. Center for Disease Control has high costs (>$400/test) and extended sample-to-answer timelines (>24 h). To address these challenges, we created a cost-effective and rapid point-of-care (POC) test for early-stage LD that assays for antibodies specific to seven Borrelia antigens and a synthetic peptide in a paper-based multiplexed vertical flow assay (xVFA). We trained a deep-learning-based diagnostic algorithm to select an optimal subset of antigen/peptide targets and then blindly tested our xVFA using human samples (N(+) = 42, N(-) = 54), achieving an area-under-the-curve (AUC), sensitivity, and specificity of 0.950, 90.5%, and 87.0%, respectively, outperforming previous LD POC tests. With batch-specific standardization and threshold tuning, the specificity of our blind-testing performance improved to 96.3%, with an AUC and sensitivity of 0.963 and 85.7%, respectively.
Collapse
Affiliation(s)
- Hyou-Arm Joung
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
| | - Zachary S Ballard
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
| | - Jing Wu
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Derek K Tseng
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
| | - Hailemariam Teshome
- Department of Neuroscience , University of California , Los Angeles , California 90025 , United States
| | - Linghao Zhang
- Department of Mechanical Engineering , University of California , Los Angeles , California 90025 , United States
| | | | - Paul M Arnaboldi
- Department of Microbiology/Immunology , New York Medical College , Valhalla , New York 10595 , United States
| | - Raymond J Dattwyler
- Department of Microbiology/Immunology , New York Medical College , Valhalla , New York 10595 , United States
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine , University of California , Los Angeles , California 90025 , United States
| | - Dino Di Carlo
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
- Department of Mechanical Engineering , University of California , Los Angeles , California 90025 , United States
| | - Aydogan Ozcan
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
- Department of Surgery , University of California , Los Angeles , California 90025 , United States
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Since recognition in 1975, Lyme disease has become the most common vector-borne illness in North America and Europe. The clinical features are well-characterized and treatment is usually curative, but misperceptions about morbidity persist. The purpose of this review is to examine advances in the diagnosis and treatment of Lyme disease, as well as ongoing management challenges. RECENT FINDINGS It is useful to recognize that Lyme disease occurs in stages, with early- and late-stage disease. Clinical expression is in part determined by Borrelial variability. For example, some strains of Borrelia burgdorferi, the causative organism in North America, are particularly arthritogenic. Most patients with early Lyme disease can be cured with a single course of oral antibiotic therapy, in contrast to some patients with Lyme arthritis, a late-stage manifestation, who are more antibiotic refractory and require other treatment strategies. Successful treatment of Lyme disease begins with successful diagnosis and with an understanding of the emergence, clinical features, and impact of Lyme disease over the past half century.
Collapse
Affiliation(s)
- Robert T Schoen
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, 60 Temple Street, Suite 6A, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Kirpach J, Colone A, Bürckert JP, Faison WJ, Dubois ARSX, Sinner R, Reye AL, Muller CP. Detection of a Low Level and Heterogeneous B Cell Immune Response in Peripheral Blood of Acute Borreliosis Patients With High Throughput Sequencing. Front Immunol 2019; 10:1105. [PMID: 31156648 PMCID: PMC6532064 DOI: 10.3389/fimmu.2019.01105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
The molecular diagnosis of acute Borreliosis is complicated and better strategies to improve the diagnostic processes are warranted. High Throughput Sequencing (HTS) of human B cell repertoires after e.g., Dengue virus infection or influenza vaccination revealed antigen-associated “CDR3 signatures” which may have the potential to support diagnosis in infectious diseases. The human B cell immune response to Borrelia burgdorferi sensu lato—the causative agent of Borreliosis—has mainly been studied at the antibody level, while less attention has been given to the cellular part of the humoral immune response. There are indications that Borrelia actively influence the B cell immune response and that it is therefore not directly comparable to responses induced by other infections. The main goal of this study was to identify B cell features that could be used to support diagnosis of Borreliosis. Therefore, we characterized the B cell immune response in these patients by combining multicolor flow cytometry, single Borrelia-reactive B cell receptor (BCR) sequencing, and B cell repertoire deep sequencing. Our phenotyping experiments showed, that there is no significant difference between B cell subpopulations of acute Borreliosis patients and controls. BCR sequences from individual epitope-reactive B cells had little in common between each other. HTS showed, however, a higher complementarity determining region 3 (CDR3) amino acid (aa) sequence overlap between samples from different timepoints in patients as compared to controls. This indicates, that HTS is sensitive enough to detect ongoing B cell immune responses in these patients. Although each individual's repertoire was dominated by rather unique clones, clustering of bulk BCR repertoire sequences revealed a higher overlap of IgG BCR repertoire sequences between acute patients than controls. Even if we have identified a few Borrelia-associated CDR3aa sequences, they seem to be rather unique for each patient and therefore not suitable as biomarkers.
Collapse
Affiliation(s)
- Josiane Kirpach
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alessia Colone
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Philippe Bürckert
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - William J Faison
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Axel R S X Dubois
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Regina Sinner
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Anna L Reye
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|