1
|
Bennasar-Figueras A. The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights. Microorganisms 2024; 12:146. [PMID: 38257973 PMCID: PMC10818976 DOI: 10.3390/microorganisms12010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The human pathogen Yersinia pestis is responsible for bubonic, septicemic, and pneumonic plague. A deeply comprehensive overview of its historical context, bacteriological characteristics, genomic analysis based on ancient DNA (aDNA) and modern strains, and its impact on historical and actual human populations, is explored. The results from multiple studies have been synthesized to investigate the origins of plague, its transmission, and effects on different populations. Additionally, molecular interactions of Y. pestis, from its evolutionary origins to its adaptation to flea-born transmission, and its impact on human and wild populations are considered. The characteristic combinations of aDNA patterns, which plays a decisive role in the reconstruction and analysis of ancient genomes, are reviewed. Bioinformatics is fundamental in identifying specific Y. pestis lineages, and automated pipelines are among the valuable tools in implementing such studies. Plague, which remains among human history's most lethal infectious diseases, but also other zoonotic diseases, requires the continuous investigation of plague topics. This can be achieved by improving molecular and genetic screening of animal populations, identifying ecological and social determinants of outbreaks, increasing interdisciplinary collaborations among scientists and public healthcare providers, and continued research into the characterization, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Antoni Bennasar-Figueras
- Microbiologia—Departament de Biologia, Universitat de les Illes Balears (UIB), Campus UIB, Carretera de Valldemossa, Km 7.5, 07122 Palma de Mallorca, Spain; ; Tel.: +34-971172778
- Facultat de Medicina, Hospital Universitari Son Espases (HUSE), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, 79, 07122 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Ķimsis J, Pokšāne A, Kazarina A, Vilcāne A, Petersone‐Gordina E, Zayakin P, Gerhards G, Ranka R. Tracing microbial communities associated with archaeological human samples in Latvia, 7-11th centuries AD. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:383-391. [PMID: 37057308 PMCID: PMC10472514 DOI: 10.1111/1758-2229.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In the grave environment, microorganisms are major ecological participants in the successional decomposition of vertebrates and could infiltrate the skeleton/skeletal material during taphonomic processes. The diversity of archaeological skeleton-associated microbial assemblages and the impact of various factors are poorly understood. This study aimed to evaluate the taxonomic microbial composition of archaeological human bone and teeth samples from the 7th to 11th centuries AD from two burial sites in Latvia. Samples were analysed by a shotgun metagenomics-based approach. The results showed a strong presence of the environmental DNA in the samples, and variability in microbial community structure between individual samples. Differences in microbial composition were observed between bone and tooth samples, as well as between different burial sites. Furthermore, the presence of endogenous ancient DNA (aDNA) in tooth samples was detected. Overall, compositions of microbial communities associated with archaeological human remains in Latvia dated 7-11th century AD were influenced by the sample type and burial location. These findings indicate that, while the content of historical DNA in archaeological samples is low, the comparison of archaeological skeleton-associated microbial assemblages across time and space, along with aDNA damage profile analysis, is important and could help to reveal putative ancient microorganisms.
Collapse
Affiliation(s)
- Jānis Ķimsis
- Latvian Biomedical Research and Study CentreLaboratory of molecular microbiologyRigaLatvia
| | - Alise Pokšāne
- Latvian Biomedical Research and Study CentreLaboratory of molecular microbiologyRigaLatvia
| | - Alisa Kazarina
- Latvian Biomedical Research and Study CentreLaboratory of molecular microbiologyRigaLatvia
| | | | | | - Pawel Zayakin
- Latvian Biomedical Research and Study CentreLaboratory of molecular microbiologyRigaLatvia
| | | | - Renate Ranka
- Latvian Biomedical Research and Study CentreLaboratory of molecular microbiologyRigaLatvia
| |
Collapse
|
3
|
<i>Yersinia pestis</i> Strains of the 1.ORI Line as Etiological Agent of the Plague Pandemic III. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-23-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Yersinia pestis strains of the 1.ORI lineage originate from China as a result of evolution of the 1.ANT phylogenetic branch. Strains of the biovar orientalis are divided into three major lines of evolution: 1.ORI1, 1.ORI2, 1.ORI3. Lines 1.ORI1 and 1.ORI2 originated in China and then spread across the east and west coasts of India, respectively. Strains of the biovar orientalis have widely spread throughout the world, mainly as a result of introduction by sea. This way, the 1.ORI1 line was imported onto the territory of North America. 1.ORI2 line has spread to Southeast Asia, Africa, Europe, and South America. In addition, the strains of the biovar orientalis were brought to the territory of Australia, however, the formation of natural foci did not occur. The spread of strains to new territories during the third plague pandemic, as a rule, took place with the participation of one strain, which caused epizootics among synanthropic rodents. After that, outbreaks were recorded among the population of port cities, followed by drifting into the countryside and the formation of natural foci under suitable natural conditions. In the absence of such, the plague pathogen was eliminated from natural biotopes, and the formation of a natural focus did not occur. In recent decades, most cases of human plague in the world have been caused by strains of the biovar orientalis (1.ORI). However, the emergence and spread of the evolutionary line “1” is insufficiently studied. Currently, there is a lack of both historical data and strains that are ancestors of modern strains in many countries to clarify the details of the irradiation of strains of the biovar orientalis. As a result, the concepts of dissemination of many evolution branches of the strains, biovar orientalis are in the form of hypotheses to date. In this work, the collection and analysis of literature data on the history and epidemiology of plague over the third pandemic, a search for a connection between epidemic manifestations and the appurtenance of the strains that caused them to certain phylogenetic lineages was carried out.
Collapse
|
4
|
History of the plague of 1720-1722, in Marseille. Presse Med 2022; 51:104138. [PMID: 36116732 DOI: 10.1016/j.lpm.2022.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
The plague epidemic of 1720-1722 had a profound effect on the history of the city of Marseille. A subject of numerous scientific studies and a source of inspiration for novels, one of the last great European epidemics is well-documented. In this article, we have sought to draw on the numerous documents left by the administrative services of the time or by the writings of survivors recounting their vision of the situation. We have completed this historical approach by referring to the study of mass graves of plague victims and will show how the simultaneous reading of two types of archives (historical and biological) can provide better anthropological knowledge of epidemic phenomena. The perspectives of interdisciplinary approaches to past infectious diseases are numerous, notably with the contributions of paleomicrobiology and genomics, and are particularly relevant today's health context.
Collapse
|
5
|
Genetic Evidence of the Black Death in the Abbey of San Leonardo (Apulia Region, Italy): Tracing the Cause of Death in Two Individuals Buried with Coins. Pathogens 2021; 10:pathogens10111354. [PMID: 34832510 PMCID: PMC8619915 DOI: 10.3390/pathogens10111354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022] Open
Abstract
The Abbey of San Leonardo in Siponto (Apulia, Southern Italy) was an important religious and medical center during the Middle Ages. It was a crossroads for pilgrims heading along the Via Francigena to the Sanctuary of Monte Sant’Angelo and for merchants passing through the harbor of Manfredonia. A recent excavation of Soprintendenza Archeologica della Puglia investigated a portion of the related cemetery, confirming its chronology to be between the end of the 13th and beginning of the 14th century. Two single graves preserved individuals accompanied by numerous coins dating back to the 14th century, hidden in clothes and in a bag tied to the waist. The human remains of the individuals were analyzed in the Laboratorio di Antropologia Fisica of Soprintendenza ABAP della città metropolitana di Bari. Three teeth from each individual were collected and sent to the Istituto Zooprofilattico Sperimentale di Puglia e Basilicata to study infectious diseases such as malaria, plague, tuberculosis, epidemic typhus and Maltese fever (Brucellosis), potentially related to the lack of inspection of the bodies during burial procedures. DNA extracted from six collected teeth and two additional unrelated human teeth (negative controls) were analyzed using PCR to verify the presence of human DNA (β-globulin) and of pathogens such as Plasmodium spp., Yersinia pestis, Mycobacterium spp., Rickettsia spp. and Brucella spp. The nucleotide sequence of the amplicon was determined to confirm the results. Human DNA was successfully amplified from all eight dental extracts and two different genes of Y. pestis were amplified and sequenced in 4 out of the 6 teeth. Molecular analyses ascertained that the individuals buried in San Leonardo were victims of the Black Death (1347–1353) and the data confirmed the lack of inspection of the corpses despite the presence of numerous coins. This study represents molecular evidence, for the first time, of Southern Italy’s involvement in the second wave of the plague pandemic.
Collapse
|
6
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Lemon A, Sagawa J, Gravelle K, Vadyvaloo V. Biovar-related differences apparent in the flea foregut colonization phenotype of distinct Yersinia pestis strains do not impact transmission efficiency. Parasit Vectors 2020; 13:335. [PMID: 32611387 PMCID: PMC7329463 DOI: 10.1186/s13071-020-04207-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
Background Yersinia pestis is the flea-transmitted etiological agent of bubonic plague. Sylvatic plague consists of complex tripartite interactions between diverse flea and wild rodent species, and pathogen strains. Transmission by flea bite occurs primarily by the Y. pestis biofilm-mediated foregut blockage and regurgitation mechanism, which has been largely detailed by studies in the model interaction between Y. pestis KIM6+ and Xenopsylla cheopis. Here, we test if pathogen-specific traits influence this interaction by determining the dynamics of foregut blockage development in X. cheopis fleas among extant avirulent pCD1-Y. pestis strains, KIM6+ and CO92, belonging to distinct biovars, and a non-circulating mutant CO92 strain (CO92gly), restored for glycerol fermentation; a key biochemical difference between the two biovars. Methods Separate flea cohorts infected with distinct strains were evaluated for (i) blockage development, bacterial burdens and flea foregut blockage pathology, and (ii) for the number of bacteria transmitted by regurgitation during membrane feeding. Strain burdens per flea was determined for fleas co-infected with CO92 and KIM6+ strains at a ratio of 1:1. Results Strains KIM6+ and CO92 developed foregut blockage at similar rates and peak temporal incidences, but the CO92gly strain showed significantly greater blockage rates that peak earlier post-infection. The KIM6+ strain, however, exhibited a distinctive foregut pathology wherein bacterial colonization extended the length of the esophagus up to the feeding mouthparts in ~65% of blocked fleas; in contrast to 32% and 26%, respectively, in fleas blocked with CO92 and CO92gly. The proximity of KIM6+ to the flea mouthparts in blocked fleas did not result in higher regurgitative transmission efficiencies as all strains transmitted variable numbers of Y. pestis, albeit slightly lower for CO92gly. During competitive co-infection, strains KIM6+ and CO92 were equally fit maintaining equivalent infection proportions in fleas over time. Conclusions We demonstrate that disparate foregut blockage pathologies exhibited by distinct extant Y. pestis strain genotypes do not influence transmission efficiency from X. cheopis fleas. In fact, distinct extant Y. pestis genotypes maintain equivalently effective blockage and transmission efficiencies which is likely advantageous to maintaining continued successful plague spread and establishment of new plague foci.![]()
Collapse
Affiliation(s)
- Athena Lemon
- Paul G Allen School for Global Animal Health, Washington State University, Washington, 99164, USA
| | - Janelle Sagawa
- Paul G Allen School for Global Animal Health, Washington State University, Washington, 99164, USA
| | - Kameron Gravelle
- Paul G Allen School for Global Animal Health, Washington State University, Washington, 99164, USA
| | - Viveka Vadyvaloo
- Paul G Allen School for Global Animal Health, Washington State University, Washington, 99164, USA.
| |
Collapse
|
8
|
Mai BHA, Drancourt M, Aboudharam G. Ancient dental pulp: Masterpiece tissue for paleomicrobiology. Mol Genet Genomic Med 2020; 8:e1202. [PMID: 32233019 PMCID: PMC7284042 DOI: 10.1002/mgg3.1202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Dental pulp with special structure has become a good reference sample in paleomicrobiology‐related blood‐borne diseases, many pathogens were detected by different methods based on the diagnosis of nucleic acids and proteins. Objectives This review aims to propose the preparation process from ancient teeth collection to organic molecule extraction of dental pulp and summary, analyze the methods that have been applied to detect septicemic pathogens through ancient dental pulps during the past 20 years following the first detection of an ancient microbe. Methods The papers used in this review with two main objectives were obtained from PubMed and Google scholar with combining keywords: “ancient,” “dental pulp,” “teeth,” “anatomy,” “structure,” “collection,” “preservation,” “selection,” “photography,” “radiography,” “contamination,” “decontamination,” “DNA,” “protein,” “extraction,” “bone,” “paleomicrobiology,” “bacteria,” “virus,” “pathogen,” “molecular biology,” “proteomics,” “PCR,” “MALDI‐TOF,” “LC/MS,” “ELISA,” “immunology,” “immunochromatography,” “genome,” “microbiome,” “metagenomics.” Results The analysis of ancient dental pulp should have a careful preparation process with many different steps to give highly accurate results, each step complies with the rules in archaeology and paleomicrobiology. After the collection of organic molecules from dental pulp, they were investigated for pathogen identification based on the analysis of DNA and protein. Actually, DNA approach takes a principal role in diagnosis while the protein approach is more and more used. A total of seven techniques was used and ten bacteria (Yersinia pestis, Bartonella quintana, Salmonella enterica serovar Typhi, Salmonella enterica serovar Paratyphi C, Mycobacterium leprae, Mycobacterium tuberculosis, Rickettsia prowazeki, Staphylococcus aureus, Borrelia recurrentis, Bartonella henselae) and one virus (Anelloviridae) were identified. Y. pestis had the most published in quantity and all methods were investigated for this pathogen, S. aureus and B. recurrentis were identified by three different methods and others only by one. The combining methods interestingly increase the positive rate with ELISA, PCR and iPCR in Yersinia pestis diagnosis. Twenty‐seven ancient genomes of Y. pestis and one ancient genome of B. recurrentis were reconstructed. Comparing to the ancient bone, ancient teeth showed more advantage in septicemic diagnosis. Beside pathogen identification, ancient pulp help to distinguish species. Conclusions Dental pulp with specific tissue is a suitable sample for detection of the blood infection in the past through DNA and protein identification with the correct preparation process, furthermore, it helps to more understand the pathogens of historic diseases and epidemics.
Collapse
Affiliation(s)
- Ba Hoang Anh Mai
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,UFR Odontologie, Aix-Marseille Université, Marseille, France
| |
Collapse
|
9
|
Mordechai L, Eisenberg M, Newfield TP, Izdebski A, Kay JE, Poinar H. The Justinianic Plague: An inconsequential pandemic? Proc Natl Acad Sci U S A 2019; 116:25546-25554. [PMID: 31792176 PMCID: PMC6926030 DOI: 10.1073/pnas.1903797116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing mortality estimates assert that the Justinianic Plague (circa 541 to 750 CE) caused tens of millions of deaths throughout the Mediterranean world and Europe, helping to end antiquity and start the Middle Ages. In this article, we argue that this paradigm does not fit the evidence. We examine a series of independent quantitative and qualitative datasets that are directly or indirectly linked to demographic and economic trends during this two-century period: Written sources, legislation, coinage, papyri, inscriptions, pollen, ancient DNA, and mortuary archaeology. Individually or together, they fail to support the maximalist paradigm: None has a clear independent link to plague outbreaks and none supports maximalist reconstructions of late antique plague. Instead of large-scale, disruptive mortality, when contextualized and examined together, the datasets suggest continuity across the plague period. Although demographic, economic, and political changes continued between the 6th and 8th centuries, the evidence does not support the now commonplace claim that the Justinianic Plague was a primary causal factor of them.
Collapse
Affiliation(s)
- Lee Mordechai
- National Socio-Environmental Synthesis Center, Annapolis, MD 21401;
- History Department, Hebrew University of Jerusalem, Mount Scopus, 9190501 Jerusalem, Israel
| | - Merle Eisenberg
- National Socio-Environmental Synthesis Center, Annapolis, MD 21401
- History Department, Princeton University, Princeton, NJ 08544
| | - Timothy P Newfield
- History Department, Georgetown University, NW, Washington, DC 20057
- Biology Department, Georgetown University, NW, Washington, DC 20057
| | - Adam Izdebski
- Paleo-Science & History Independent Research Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Institute of History, Jagiellonian University, 31-007 Kraków, Poland
| | - Janet E Kay
- Society of Fellows in the Liberal Arts, Princeton University, Princeton, NJ 08544
| | - Hendrik Poinar
- Department of Anthropology, McMaster University, Hamilton, ON L8S 4L9, Canada
- Department of Biochemistry, McMaster University, Hamilton, ON L8S 4L9, Canada
- McMaster Ancient DNA Centre, McMaster University, Hamilton, ON L8S 4L9, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L9, Canada
| |
Collapse
|
10
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
11
|
Keller M, Spyrou MA, Scheib CL, Neumann GU, Kröpelin A, Haas-Gebhard B, Päffgen B, Haberstroh J, Ribera I Lacomba A, Raynaud C, Cessford C, Durand R, Stadler P, Nägele K, Bates JS, Trautmann B, Inskip SA, Peters J, Robb JE, Kivisild T, Castex D, McCormick M, Bos KI, Harbeck M, Herbig A, Krause J. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541-750). Proc Natl Acad Sci U S A 2019; 116:12363-12372. [PMID: 31164419 PMCID: PMC6589673 DOI: 10.1073/pnas.1820447116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium's spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic.
Collapse
Affiliation(s)
- Marcel Keller
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
- State Collection of Anthropology and Palaeoanatomy Munich, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80333 Munich, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Christiana L Scheib
- Department of Archaeology, University of Cambridge, Cambridge CB2 3ER, United Kingdom
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Andreas Kröpelin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Bernd Päffgen
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University Munich, 80799 Munich, Germany
| | - Jochen Haberstroh
- Bavarian State Department of Monuments and Sites, 80539 Munich, Germany
| | | | - Claude Raynaud
- CNRS, UMR5140, Archéologie des Sociétés Méditerranéennes, 34199 Montpellier, France
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Cambridge CB2 3ER, United Kingdom
| | - Raphaël Durand
- Service d'Archéologie Préventive de l'Agglomération de Bourges Plus, 18023 Bourges Cedex, France
| | - Peter Stadler
- Department of Pre- and Protohistory, University of Vienna, 1190 Vienna, Austria
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Jessica S Bates
- Department of Archaeology, University of Cambridge, Cambridge CB2 3ER, United Kingdom
| | - Bernd Trautmann
- State Collection of Anthropology and Palaeoanatomy Munich, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80333 Munich, Germany
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, United Kingdom
| | - Joris Peters
- State Collection of Anthropology and Palaeoanatomy Munich, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80333 Munich, Germany
- ArchaeoBioCenter, Ludwig Maximilian University Munich, 80539 Munich, Germany
- Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig Maximilian University Munich, 80539 Munich, Germany
| | - John E Robb
- Department of Archaeology, University of Cambridge, Cambridge CB2 3ER, United Kingdom
| | - Toomas Kivisild
- Department of Archaeology, University of Cambridge, Cambridge CB2 3ER, United Kingdom
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | - Michael McCormick
- Initiative for the Science of the Human Past, Department of History, Harvard University, Cambridge, MA 02138
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 07745 Jena, Germany
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Michaela Harbeck
- State Collection of Anthropology and Palaeoanatomy Munich, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80333 Munich, Germany;
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 07745 Jena, Germany
| |
Collapse
|
12
|
Barbieri R, Mekni R, Levasseur A, Chabrière E, Signoli M, Tzortzis S, Aboudharam G, Drancourt M. Paleoproteomics of the Dental Pulp: The plague paradigm. PLoS One 2017; 12:e0180552. [PMID: 28746380 PMCID: PMC5528255 DOI: 10.1371/journal.pone.0180552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Chemical decomposition and fragmentation may limit the detection of ancient host and microbial DNA while some proteins can be detected for extended periods of time. We applied paleoproteomics on 300-year-old dental pulp specimens recovered from 16 individuals in two archeological funeral sites in France, comprising one documented plague site and one documented plague-negative site. The dental pulp paleoproteome of the 16 teeth comprised 439 peptides representative of 30 proteins of human origin and 211 peptides representative of 27 proteins of non-human origin. Human proteins consisted of conjunctive tissue and blood proteins including IgA immunoglobulins. Four peptides were indicative of three presumable Yersinia pestis proteins detected in 3/8 dental pulp specimens from the plague-positive site but not in the eight dental pulp specimens collected in the plague-negative site. Paleoproteomics applied to the dental pulp is a new and innovative approach to screen ancient individuals for the detection of blood-borne pathogens and host inflammatory response.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
| | - Rania Mekni
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
| | - Eric Chabrière
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
| | | | | | - Gérard Aboudharam
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, CNRS, Faculté de Médecine IHU Méditerranée-Infection, Marseille, France
- * E-mail:
| |
Collapse
|
13
|
A Personal View of How Paleomicrobiology Aids Our Understanding of the Role of Lice in Plague Pandemics. Microbiol Spectr 2017; 4. [PMID: 27726806 DOI: 10.1128/microbiolspec.poh-0001-2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have been involved in the field of paleomicrobiology since 1998, when we used dental pulp to identify Yersinia pestis as the causative agent of the great plague of Marseille (1720). We recently designed a specific technique, "suicide PCR," that can prevent contamination. A controversy arose between two teams, with one claiming that DNA must be altered to amplify it and the other group claiming that demographic data did not support the role of Y. pestis in the Black Death (i.e., the great plague of the Middle Ages). These controversies led us to evaluate other epidemiological models and to propose the body louse as the vector of this pandemic. This proposal was substantiated by experimental models, the recovery of Y. pestis from lice in the Congo, and the identification of epidemics involving both Y. pestis and Bartonella quintana (the agent of trench fever, transmitted by the body louse) in ancient corpses from mass graves. Paleomicrobiology has led to a re-evaluation of plague pandemics.
Collapse
|
14
|
Malek MA, Bitam I, Levasseur A, Terras J, Gaudart J, Azza S, Flaudrops C, Robert C, Raoult D, Drancourt M. Yersinia pestis halotolerance illuminates plague reservoirs. Sci Rep 2017; 7:40022. [PMID: 28054667 PMCID: PMC5214965 DOI: 10.1038/srep40022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
The plague agent Yersinia pestis persists for years in the soil. Two millennia after swiping over Europe and North Africa, plague established permanent foci in North Africa but not in neighboring Europe. Mapping human plague foci reported in North Africa for 70 years indicated a significant location at <3 kilometers from the Mediterranean seashore or the edge of salted lakes named chotts. In Algeria, culturing 352 environmental specimens naturally containing 0.5 to 70 g/L NaCl yielded one Y. pestis Orientalis biotype isolate in a 40 g/L NaCl chott soil specimen. Core genome SNP analysis placed this isolate within the Y. pestis branch 1, Orientalis biovar. Culturing Y. pestis in broth steadily enriched in NaCl indicated survival up to 150 g/L NaCl as L-form variants exhibiting a distinctive matrix assisted laser desorption-ionization time-of-flight mass spectrometry peptide profile. Further transcriptomic analyses found the upregulation of several outer-membrane proteins including TolC efflux pump and OmpF porin implied in osmotic pressure regulation. Salt tolerance of Y. pestis L-form may play a role in the maintenance of natural plague foci in North Africa and beyond, as these geographical correlations could be extended to 31 plague foci in the northern hemisphere (from 15°N to 50°N).
Collapse
Affiliation(s)
- Maliya Alia Malek
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
- Laboratoire Biodiversité et Environnement: Interactions Génomes, Faculté des Sciences Biologiques Université des Sciences et de la Technologie Houari Boumediene, El Alia, Bab Ezzouar 16111, Algérie
| | - Idir Bitam
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
- Laboratoire Biodiversité et Environnement: Interactions Génomes, Faculté des Sciences Biologiques Université des Sciences et de la Technologie Houari Boumediene, El Alia, Bab Ezzouar 16111, Algérie
| | - Anthony Levasseur
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Jérôme Terras
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Jean Gaudart
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
- Aix-Marseille Université, UMR912 SESSTIM (INSERM/IRD/AMU), Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Said Azza
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Christophe Flaudrops
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Catherine Robert
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, 27 Bd Jean MOULIN, 13385 Marseille Cedex 5, France
| |
Collapse
|
15
|
Fornaciari A. Environmental Microbial Forensics and Archaeology of Past Pandemics. Microbiol Spectr 2017; 5:10.1128/microbiolspec.emf-0011-2016. [PMID: 28233511 PMCID: PMC11687427 DOI: 10.1128/microbiolspec.emf-0011-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
The development of paleomicrobiology with new molecular techniques such as metagenomics is revolutionizing our knowledge of microbial evolution in human history. The study of microbial agents that are concomitantly active in the same biological environment makes it possible to obtain a picture of the complex interrelations among the different pathogens and gives us the perspective to understand the microecosystem of ancient times. This research acts as a bridge between disciplines such as archaeology, biology, and medicine, and the development of paleomicrobiology forces archaeology to broaden and update its methods. This chapter addresses the archaeological issues related to the identification of cemeteries from epidemic catastrophes (typology of burials, stratigraphy, topography, paleodemography) and the issues related to the sampling of human remains for biomolecular analysis. Developments in the field of paleomicrobiology are described with the example of the plague. Because of its powerful interdisciplinary features, the paleomicrobiological study of Yersinia pestis is an extremely interesting field, in which paleomicrobiology, historical research, and archeology are closely related, and it has important implications for the current dynamics of epidemiology.
Collapse
Affiliation(s)
- Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
16
|
|
17
|
Drancourt M, Raoult D. Molecular history of plague. Clin Microbiol Infect 2016; 22:911-915. [PMID: 27615720 DOI: 10.1016/j.cmi.2016.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Abstract
Plague, a deadly zoonose caused by the bacterium Yersinia pestis, has been firmly documented in 39 historical burial sites in Eurasia that date from the Bronze Age to two historical pandemics spanning the 6th to 18th centuries. Palaeomicrobiologic data, including gene and spacer sequences, whole genome sequences and protein data, confirmed that two historical pandemics swept over Europe from probable Asian sources and possible two-way-ticket journeys back from Europe to Asia. These investigations made it possible to address questions regarding the potential sources and routes of transmission by completing the standard rodent and rodent-flea transmission scheme. This suggested that plague was transmissible by human ectoparasites such as lice, and that Y. pestis was able to persist for months in the soil, which is a source of reinfection for burrowing mammals. The analyses of seven complete genome sequences from the Bronze Age indicated that Y. pestis was probably not an ectoparasite-borne pathogen in these populations. Further analyses of 14 genomes indicated that the Justinian pandemic strains may have formed a clade distinct from the one responsible for the second pandemic, spanning in Y. pestis branch 1, which also comprises the third pandemic strains. Further palaeomicrobiologic studies must tightly connect with historical and anthropologic studies to resolve questions regarding the actual sources of plague in ancient populations, alternative routes of transmission and resistance traits. Answering these questions will broaden our understanding of plague epidemiology so we may better face the actuality of this deadly infection in countries where it remains epidemic.
Collapse
Affiliation(s)
- M Drancourt
- Aix Marseille Université, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - D Raoult
- Aix Marseille Université, INSERM, CNRS, IRD, URMITE, Marseille, France.
| |
Collapse
|
18
|
Bouwman A, Rühli F. Archaeogenetics in evolutionary medicine. J Mol Med (Berl) 2016; 94:971-7. [PMID: 27289479 DOI: 10.1007/s00109-016-1438-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/22/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022]
Abstract
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Collapse
|
19
|
Yang R, Cui Y, Bi Y. Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:377-391. [PMID: 27722871 DOI: 10.1007/978-94-024-0890-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Yersinia pestis is a typical zoonotic bacterial pathogen. The following reasons make this pathogen a model for studying zoonotic pathogens: (1) Its unique lifestyle makes Y. pestis an ideal model for studying host-vector-environment-pathogen interactions; (2) population diversity characters in Y. pestis render it a model species for studying monomorphic bacterial evolution; (3) the pathogenic features of bacteria provide us with good opportunities to study human immune responses; (4) typical animal and vector models of Y. pestis infection create opportunities for experimental studies on pathogenesis and evolution; and (5) repeated pandemics and local outbreaks provide us with clues about the infectious disease outbreaks that have occurred in human history.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| |
Collapse
|
20
|
Vogler AJ, Keim P, Wagner DM. A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2015; 37:21-36. [PMID: 26518910 DOI: 10.1016/j.meegid.2015.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/28/2022]
Abstract
Numerous subtyping methods have been applied to Yersinia pestis with varying success. Here, we review the various subtyping methods that have been applied to Y. pestis and their capacity for answering questions regarding the population genetics, phylogeography, and molecular epidemiology of this important human pathogen. Methods are evaluated in terms of expense, difficulty, transferability among laboratories, discriminatory power, usefulness for different study questions, and current applicability in light of the advent of whole genome sequencing.
Collapse
Affiliation(s)
- Amy J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; Translational Genomics Research Institute North, Flagstaff, AZ 86001, USA.
| | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| |
Collapse
|
21
|
Detection of Rickettsia felis, Rickettsia typhi, Bartonella Species and Yersinia pestis in Fleas (Siphonaptera) from Africa. PLoS Negl Trop Dis 2014; 8:e3152. [PMID: 25299702 PMCID: PMC4191943 DOI: 10.1371/journal.pntd.0003152] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Little is known about the presence/absence and prevalence of Rickettsia spp, Bartonella spp. and Yersinia pestis in domestic and urban flea populations in tropical and subtropical African countries. METHODOLOGY/PRINCIPAL FINDINGS Fleas collected in Benin, the United Republic of Tanzania and the Democratic Republic of the Congo were investigated for the presence and identity of Rickettsia spp., Bartonella spp. and Yersinia pestis using two qPCR systems or qPCR and standard PCR. In Xenopsylla cheopis fleas collected from Cotonou (Benin), Rickettsia typhi was detected in 1% (2/199), and an uncultured Bartonella sp. was detected in 34.7% (69/199). In the Lushoto district (United Republic of Tanzania), R. typhi DNA was detected in 10% (2/20) of Xenopsylla brasiliensis, and Rickettsia felis was detected in 65% (13/20) of Ctenocephalides felis strongylus, 71.4% (5/7) of Ctenocephalides canis and 25% (5/20) of Ctenophthalmus calceatus calceatus. In the Democratic Republic of the Congo, R. felis was detected in 56.5% (13/23) of Ct. f. felis from Kinshasa, in 26.3% (10/38) of Ct. f. felis and 9% (1/11) of Leptopsylla aethiopica aethiopica from Ituri district and in 19.2% (5/26) of Ct. f. strongylus and 4.7% (1/21) of Echidnophaga gallinacea. Bartonella sp. was also detected in 36.3% (4/11) of L. a. aethiopica. Finally, in Ituri, Y. pestis DNA was detected in 3.8% (1/26) of Ct. f. strongylus and 10% (3/30) of Pulex irritans from the villages of Wanyale and Zaa. CONCLUSION Most flea-borne infections are neglected diseases which should be monitored systematically in domestic rural and urban human populations to assess their epidemiological and clinical relevance. Finally, the presence of Y. pestis DNA in fleas captured in households was unexpected and raises a series of questions regarding the role of free fleas in the transmission of plague in rural Africa, especially in remote areas where the flea density in houses is high.
Collapse
|
22
|
Gilbert MTP. Yersinia pestis: one pandemic, two pandemics, three pandemics, more? THE LANCET. INFECTIOUS DISEASES 2014; 14:264-5. [DOI: 10.1016/s1473-3099(14)70002-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Butler T. Plague history: Yersin’s discovery of the causative bacterium in 1894 enabled, in the subsequent century, scientific progress in understanding the disease and the development of treatments and vaccines. Clin Microbiol Infect 2014; 20:202-9. [DOI: 10.1111/1469-0691.12540] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D, Pearson T, Fourment M, Golding B, Riehm JM, Earn DJD, Dewitte S, Rouillard JM, Grupe G, Wiechmann I, Bliska JB, Keim PS, Scholz HC, Holmes EC, Poinar H. Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis. THE LANCET. INFECTIOUS DISEASES 2014; 14:319-26. [PMID: 24480148 DOI: 10.1016/s1473-3099(13)70323-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic. METHODS Teeth were removed from two individuals (known as A120 and A76) from the early medieval Aschheim-Bajuwarenring cemetery (Aschheim, Bavaria, Germany). We isolated DNA from the teeth using a modified phenol-chloroform method. We screened DNA extracts for the presence of the Y pestis-specific pla gene on the pPCP1 plasmid using primers and standards from an established assay, enriched the DNA, and then sequenced it. We reconstructed draft genomes of the infectious Y pestis strains, compared them with a database of genomes from 131 Y pestis strains from the second and third pandemics, and constructed a maximum likelihood phylogenetic tree. FINDINGS Radiocarbon dating of both individuals (A120 to 533 AD [plus or minus 98 years]; A76 to 504 AD [plus or minus 61 years]) places them in the timeframe of the first pandemic. Our phylogeny contains a novel branch (100% bootstrap at all relevant nodes) leading to the two Justinian samples. This branch has no known contemporary representatives, and thus is either extinct or unsampled in wild rodent reservoirs. The Justinian branch is interleaved between two extant groups, 0.ANT1 and 0.ANT2, and is distant from strains associated with the second and third pandemics. INTERPRETATION We conclude that the Y pestis lineages that caused the Plague of Justinian and the Black Death 800 years later were independent emergences from rodents into human beings. These results show that rodent species worldwide represent important reservoirs for the repeated emergence of diverse lineages of Y pestis into human populations. FUNDING McMaster University, Northern Arizona University, Social Sciences and Humanities Research Council of Canada, Canada Research Chairs Program, US Department of Homeland Security, US National Institutes of Health, Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- David M Wagner
- Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Michaela Harbeck
- State Collection for Anthropology and Palaeoanatomy, Munich, Germany
| | - Alison Devault
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Nicholas Waglechner
- Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jason W Sahl
- Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA; Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Jacob Enk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dawn N Birdsell
- Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Melanie Kuch
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Candice Lumibao
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada; Department of Biology, University of Notre Dame, Notre Dame, IN, USA
| | - Debi Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Talima Pearson
- Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Mathieu Fourment
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Julia M Riehm
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - David J D Earn
- Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
| | - Sharon Dewitte
- Department of Anthropology, University of South Carolina, Columbia, SC, USA; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jean-Marie Rouillard
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Mycroarray, Ann Arbor, MI, USA
| | - Gisela Grupe
- State Collection for Anthropology and Palaeoanatomy, Munich, Germany; Department Biology I, Biodiversity Research/Anthropology, Ludwig-Maximilian University of Munich, Martinsried, Germany
| | - Ingrid Wiechmann
- Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilian University of Munich, Martinsried, Germany
| | - James B Bliska
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - Paul S Keim
- Center for Microbial Genetics and Genomics and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA; Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
25
|
Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog 2013; 9:e1003349. [PMID: 23658525 PMCID: PMC3642051 DOI: 10.1371/journal.ppat.1003349] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/24/2013] [Indexed: 01/07/2023] Open
Abstract
Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19th and 20th centuries, during which plague was spread around the world, and the second pandemic of the 14th–17th centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6th–8th centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics. Plague is a notorious and fatal human disease caused by the bacterium Yersinia pestis that is endemic in many countries around the world. Three of the most devastating pandemics in human history have been associated with plague. The second pandemic originated in central Asia and peaked in Europe between 1348 and 1350 (a period of time known as the Black Death). The third pandemic began in the Yunnan province of China in the mid-1850s and subsequently spread to Africa, the Americas, Australia, Europe, and other parts of Asia. The second and third pandemics are well documented and scientifically proven. However, the first pandemic, which began in the 6th century and is also known as Justinianic Plague, is still a matter of controversy. Recently it has been suggested that Justinian's plague was not caused by Y. pestis. We detected Y. pestis DNA in samples obtained from multiple 6th century skeletons from Germany. This confirms that Justinianic Plague crossed the Alps and affected local populations there, including current day Bavaria. Furthermore, we used DNA fingerprinting approaches to determine Asia as the likely geographic origin for these strains.
Collapse
|
26
|
A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. mBio 2013; 4:e00623-12. [PMID: 23404402 PMCID: PMC3573667 DOI: 10.1128/mbio.00623-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A cluster of human plague cases occurred in the seaport city of Mahajanga, Madagascar, from 1991 to 1999 following 62 years with no evidence of plague, which offered insights into plague pathogen dynamics in an urban environment. We analyzed a set of 44 Mahajanga isolates from this 9-year outbreak, as well as an additional 218 Malagasy isolates from the highland foci. We sequenced the genomes of four Mahajanga strains, performed whole-genome sequence single-nucleotide polymorphism (SNP) discovery on those strains, screened the discovered SNPs, and performed a high-resolution 43-locus multilocus variable-number tandem-repeat analysis of the isolate panel. Twenty-two new SNPs were identified and defined a new phylogenetic lineage among the Malagasy isolates. Phylogeographic analysis suggests that the Mahajanga lineage likely originated in the Ambositra district in the highlands, spread throughout the northern central highlands, and was then introduced into and became transiently established in Mahajanga. Although multiple transfers between the central highlands and Mahajanga occurred, there was a locally differentiating and dominant subpopulation that was primarily responsible for the 1991-to-1999 Mahajanga outbreaks. Phylotemporal analysis of this Mahajanga subpopulation revealed a cycling pattern of diversity generation and loss that occurred during and after each outbreak. This pattern is consistent with severe interseasonal genetic bottlenecks along with large seasonal population expansions. The ultimate extinction of plague pathogens in Mahajanga suggests that, in this environment, the plague pathogen niche is tenuous at best. However, the temporary large pathogen population expansion provides the means for plague pathogens to disperse and become ecologically established in more suitable nonurban environments. Maritime spread of plague led to the global dissemination of this disease and affected the course of human history. Multiple historical plague waves resulted in massive human mortalities in three classical plague pandemics: Justinian (6th and 7th centuries), Middle Ages (14th to 17th centuries), and third (mid-1800s to the present). Key to these events was the pathogen’s entry into new lands by “plague ships” via seaport cities. Although initial disease outbreaks in ports were common, they were almost never sustained for long and plague pathogens survived only if they could become established in ecologically suitable habitats. Although plague pathogens’ ability to invade port cities has been essential for intercontinental spread, these regions have not proven to be a suitable long-term niche. The disease dynamics in port cities such as Mahajanga are thus critical to plague pathogen amplification and dispersal into new suitable ecological niches for the observed global long-term maintenance of plague pathogens.
Collapse
|
27
|
Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A 2012; 110:577-82. [PMID: 23271803 DOI: 10.1073/pnas.1205750110] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.
Collapse
|
28
|
Raoult D, Mouffok N, Bitam I, Piarroux R, Drancourt M. Plague: history and contemporary analysis. J Infect 2012; 66:18-26. [PMID: 23041039 DOI: 10.1016/j.jinf.2012.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 01/15/2023]
Abstract
Plague has caused ravaging outbreaks, including the Justinian plague and the "black death" in the Middle Ages. The causative agents of these outbreaks have been confirmed using modern molecular tests. The vector of plague during pandemics remains the subject of controversy. Nowadays, plague must be suspected in all areas where plague is endemic in rodents when patients present with adenitis or with pneumonia with a bloody expectorate. Diagnosis is more difficult in the situation of the reemergence of plague, as in Algeria for example, told by the first physician involved in that outbreak (NM). When in doubt, it is preferable to prescribe treatment with doxycycline while waiting for the test results because of the risk of fatality in individuals with plague. The typical bubo is a type of adenitis that is painful, red and nonfluctuating. The diagnosis is simple when microbiological analysis is conducted. Plague is a likely diagnosis when one sees gram-negative bacilli in lymph node aspirate or biopsy samples. Yersinia pestis grows very easily in blood cultures and is easy to identify by biochemical tests and MALDI-TOF mass spectrometry. Pneumonic plague and septicemic plague without adenitis are difficult to diagnose, and these diagnoses are often made by chance or retrospectively when cases are not part of an epidemic or related to another specific epidemiologic context. The treatment of plague must be based on gentamicin or doxycycline. Treatment with one of these antibiotics must be started as soon as plague is suspected. Analysis of past plague epidemics by using modern laboratory tools illustrated the value of epidemic buboes for the clinical diagnosis of plague; and brought new concepts regarding its transmission by human ectoparasites.
Collapse
Affiliation(s)
- Didier Raoult
- Aix Marseille Université, Unité des Rickettsies, UMR CNRS, IRD, INSERM, IHU Méditerranée Infection, France.
| | | | | | | | | |
Collapse
|
29
|
Nguyen-Hieu T, Aboudharam G, Drancourt M. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology. BMC Res Notes 2012; 5:528. [PMID: 23009640 PMCID: PMC3532149 DOI: 10.1186/1756-0500-5-528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022] Open
Abstract
Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct) values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure) varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p < 0.05). Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.
Collapse
Affiliation(s)
- Tung Nguyen-Hieu
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix-Marseille Université, 27 boulevard Jean Moulin, Marseille, 13005, France
| | | | | |
Collapse
|
30
|
Abstract
Drawing its etymology from the Latin pestis (curse), plague, over the centuries, has been more dreaded by humankind than any other epidemic. The Apocalypse had recognized plague as the archetypal divine curse, 'the power to kill over a fourth of the earth'. Plague is thus a particular topic of study, insofar that it is one of the rare epidemics that has had recurrent major consequences on demography and human societies. Its highly transmissible nature, the brutality of its action, its high pathogenicity, marked by strong lethality and great swiftness, and the complete absence of treatment options before the 20th century conferred on it a sinister aspect. Generating a series of severe demographic crises, well known in the Western world, it has necessarily influenced the evolution of societies at both the biological and cultural levels.
Collapse
Affiliation(s)
- M Signoli
- Anthropology, Law, Ethic and Health Department, Medicine Faculty of Marseille, UMR 6578 Aix-Marseille University, CNRS-EFS, Marseille, France.
| |
Collapse
|
31
|
Abstract
With plague being not only a subject of interest for historians, but still a disease of public health concern in several countries, mainly in Africa, there were hopes that analyses of the Yersinia pestis genomes would put an end to this deadly epidemic pathogen. Genomics revealed that Y. pestis isolates evolved from Yersinia pseudotuberculosis in Central Asia some millennia ago, after the acquisition of two Y. pestis-specific plasmids balanced genomic reduction parallel with the expansion of insertion sequences, illustrating the modern concept that, except for the acquisition of plasmid-borne toxin-encoding genes, the increased virulence of Y. pestis resulted from gene loss rather than gene acquisition. The telluric persistence of Y. pestis reminds us of this close relationship, and matters in terms of plague epidemiology. Whereas biotype Orientalis isolates spread worldwide, the Antiqua and Medievalis isolates showed more limited expansion. In addition to animal ectoparasites, human ectoparasites such as the body louse may have participated in this expansion and in devastating historical epidemics. The recent analysis of a Black Death genome indicated that it was more closely related to the Orientalis branch than to the Medievalis branch. Modern Y. pestis isolates grossly exhibit the same gene content, but still undergo micro-evolution in geographically limited areas by differing in the genome architecture, owing to inversions near insertion sequences and the stabilization of the YpfPhi prophage in Orientalis biotype isolates. Genomics have provided several new molecular tools for the genotyping and phylogeographical tracing of isolates and description of plague foci. However, genomics and post-genomics approaches have not yet provided new tools for the prevention, diagnosis and management of plague patients and the plague epidemics still raging in some sub-Saharan countries.
Collapse
Affiliation(s)
- M Drancourt
- URMITE UMR CNRS 6236 IRD 98, IFR48, Méditerranée Infection, Aix-Marseille-Université, Marseille, France.
| |
Collapse
|
32
|
Achtman M. Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 2012; 367:860-7. [PMID: 22312053 DOI: 10.1098/rstb.2011.0303] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some of the most deadly bacterial diseases, including leprosy, anthrax and plague, are caused by bacterial lineages with extremely low levels of genetic diversity, the so-called 'genetically monomorphic bacteria'. It has only become possible to analyse the population genetics of such bacteria since the recent advent of high-throughput comparative genomics. The genomes of genetically monomorphic lineages contain very few polymorphic sites, which often reflect unambiguous clonal genealogies. Some genetically monomorphic lineages have evolved in the last decades, e.g. antibiotic-resistant Staphylococcus aureus, whereas others have evolved over several millennia, e.g. the cause of plague, Yersinia pestis. Based on recent results, it is now possible to reconstruct the sources and the history of pandemic waves of plague by a combined analysis of phylogeographic signals in Y. pestis plus polymorphisms found in ancient DNA. Different from historical accounts based exclusively on human disease, Y. pestis evolved in China, or the vicinity, and has spread globally on multiple occasions. These routes of transmission can be reconstructed from the genealogy, most precisely for the most recent pandemic that was spread from Hong Kong in multiple independent waves in 1894.
Collapse
Affiliation(s)
- Mark Achtman
- Environmental Research Institute and Department of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Gibbons HS, Krepps MD, Ouellette G, Karavis M, Onischuk L, Leonard P, Broomall S, Sickler T, Betters JL, McGregor P, Donarum G, Liem A, Fochler E, McNew L, Rosenzweig CN, Skowronski E. Comparative genomics of 2009 seasonal plague (Yersinia pestis) in New Mexico. PLoS One 2012; 7:e31604. [PMID: 22359605 PMCID: PMC3281092 DOI: 10.1371/journal.pone.0031604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/10/2012] [Indexed: 02/07/2023] Open
Abstract
Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen.
Collapse
Affiliation(s)
- Henry S Gibbons
- United States Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Malou N, Tran TNN, Nappez C, Signoli M, Le Forestier C, Castex D, Drancourt M, Raoult D. Immuno-PCR--a new tool for paleomicrobiology: the plague paradigm. PLoS One 2012; 7:e31744. [PMID: 22347507 PMCID: PMC3276503 DOI: 10.1371/journal.pone.0031744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/12/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cause of past plague pandemics was controversial but several research teams used PCR techniques and dental pulp as the primary material to reveal that they were caused by Yersinia pestis. However, the degradation of DNA limits the ability to detect ancient infections. METHODS We used for the first time immuno-PCR to detect Yersinia pestis antigens; it can detect protein concentrations 70 times lower than the standard ELISA. After determining the cut-off value, we tested 34 teeth that were obtained from mass graves of plague, and compared previous PCR results with ELISA and immuno-PCR results. RESULTS The immuno-PCR technique was the most sensitive (14 out of 34) followed by the PCR technique (10 out of 34) and ELISA (3 out of 34). The combination of these three methods identified 18 out of 34 (53%) teeth as presumably being from people with the plague. CONCLUSION Immuno-PCR is specific (no false-positive samples were found) and more sensitive than the currently used method to detect antigens of ancient infections in dental pulp. The combination of three methods, ELISA, PCR and immuno-PCR, increased the capacity to identify ancient pathogens in dental pulp.
Collapse
Affiliation(s)
- Nada Malou
- Aix-Marseille Université, URMITE, UMR CNRS 6236- IRD 198, Faculté de Médecine, Marseille, France
| | - Thi-Nguyen-Ny Tran
- Aix-Marseille Université, URMITE, UMR CNRS 6236- IRD 198, Faculté de Médecine, Marseille, France
| | - Claude Nappez
- Aix-Marseille Université, URMITE, UMR CNRS 6236- IRD 198, Faculté de Médecine, Marseille, France
| | - Michel Signoli
- Aix-Marseille Université, Anthropologie Bioculturelle, UMR 6578 CNRS, EFS, Marseille, France
| | - Cyrille Le Forestier
- Institut National de Recherches Archéologiques Préventives UMR 6130, Centre d'Etudes Préhistoire, Antiquité, Moyen Age, Direction Interrégionale Centre, Ile de France, France
| | - Dominique Castex
- De la Préhistoire à l'Actuel: Culture Environnement et Anthropologie - Laboratoire d'Anthropologie des Populations du Passé, UMR 5199, Université de Bordeaux, Bordeaux, France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, UMR CNRS 6236- IRD 198, Faculté de Médecine, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, URMITE, UMR CNRS 6236- IRD 198, Faculté de Médecine, Marseille, France,* E-mail:
| |
Collapse
|
35
|
|
36
|
Drancourt M, Raoult D. Genotyping Yersinia pestis in historical plague. THE LANCET. INFECTIOUS DISEASES 2011; 11:894-5. [DOI: 10.1016/s1473-3099(11)70292-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Tsangaras K, Greenwood AD. Museums and disease: using tissue archive and museum samples to study pathogens. Ann Anat 2011; 194:58-73. [PMID: 21641784 DOI: 10.1016/j.aanat.2011.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/28/2022]
Abstract
Molecular studies of archival and fossil samples have traditionally focused on the nucleic acids derived from the host species. However, there has recently been an increase in ancient DNA research on the identification and characterization of infectious agents within the hosts. The study of pathogens from the past provides great opportunities for discovering the causes of historical infection events, characterizing host-microorganism co-evolution and directly investigating the evolution of specific pathogens. Several research teams have been able to isolate and characterize a variety of different bacterial, parasite and viral microorganisms. However, this emerging field is not without obstacles. The diagenetic processes that make ancient DNA research generally difficult are also impediments to ancient pathogen research and perhaps more so given that their DNA may represent an even rarer proportion of the remaining nucleic acids in a fossil sample than host DNA. However, studies performed under controlled conditions and following stringent ancient DNA protocols can and have yielded reliable and often surprising results. This article reviews the advantages, problems, and failures of ancient microbiological research.
Collapse
|
38
|
Tran TNN, Forestier CL, Drancourt M, Raoult D, Aboudharam G. Brief communication: co-detection of Bartonella quintana and Yersinia pestis in an 11th-15th burial site in Bondy, France. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:489-94. [PMID: 21541920 DOI: 10.1002/ajpa.21510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/17/2011] [Indexed: 11/09/2022]
Abstract
Historical and anthropological data suggest that skeletons excavated from an 11th to 15th century mass grave in Bondy, France, may be those of victims of the Great Plague. Using high-throughput real-time PCR investigation of the dental pulp collected from 14 teeth from five such skeletons, we detected Bartonella quintana DNA in three individuals and Yersinia pestis DNA in two individuals. DNA from five other deadly pathogens was not found. Suicide PCR genotyping confirmed Y. pestis DNA belonging to the Orientalis biotype. One individual had co-infection. These data suggest a plague epidemic in a population already infected by the body louse-transmitted B. quintana or a body louse-driven transmission of the plague that drove a medieval epidemic in inland Europe.
Collapse
Affiliation(s)
- Thi-Nguyen-Ny Tran
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS, IRD, IFR, Faculté de médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
39
|
Tran TNN, Signoli M, Fozzati L, Aboudharam G, Raoult D, Drancourt M. High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy. PLoS One 2011; 6:e16735. [PMID: 21423736 PMCID: PMC3053355 DOI: 10.1371/journal.pone.0016735] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/26/2010] [Indexed: 11/21/2022] Open
Abstract
Background Historical records suggest that multiple burial sites from the
14th–16th centuries in Venice, Italy, were used during
the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly
transmissible pathogens in 173 dental pulp specimens collected from 46
graves. Bartonella quintana DNA was identified in five
(2.9%) samples, including three from the 16th century and two from
the 15th century, and Yersinia pestis DNA was detected in
three (1.7%) samples, including two from the 14th century and one
from the 16th century. Partial glpD gene sequencing
indicated that the detected Y. pestis was the Orientalis
biotype. Conclusions These data document for the first time successive plague epidemics in the
medieval European city where quarantine was first instituted in the 14th
century.
Collapse
Affiliation(s)
- Thi-Nguyen-Ny Tran
- Unité de Recherche sur les Maladies Infectieuses et Tropicales
Emergentes (URMITE), UMR CNRS 6236 IRD 198, IFR48, Faculté de
Médecine, Université de la Méditerranée, Marseille,
France
| | - Michel Signoli
- Anthropologie Bioculturelle, UMR 6578 CNRS, EFS, Université de la
Méditerranée, Marseille, France
| | - Luigi Fozzati
- Soprintendenza Archeologica del Veneto, Venice, Italy
| | - Gérard Aboudharam
- Unité de Recherche sur les Maladies Infectieuses et Tropicales
Emergentes (URMITE), UMR CNRS 6236 IRD 198, IFR48, Faculté de
Médecine, Université de la Méditerranée, Marseille,
France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales
Emergentes (URMITE), UMR CNRS 6236 IRD 198, IFR48, Faculté de
Médecine, Université de la Méditerranée, Marseille,
France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales
Emergentes (URMITE), UMR CNRS 6236 IRD 198, IFR48, Faculté de
Médecine, Université de la Méditerranée, Marseille,
France
- * E-mail:
| |
Collapse
|
40
|
Wiechmann I, Harbeck M, Grupe G. Yersinia pestis DNA sequences in late medieval skeletal finds, Bavaria. Emerg Infect Dis 2011; 16:1806-7. [PMID: 21029555 PMCID: PMC3294523 DOI: 10.3201/eid1611.100598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
|
42
|
|
43
|
Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog 2010; 6:e1001134. [PMID: 20949072 PMCID: PMC2951374 DOI: 10.1371/journal.ppat.1001134] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022] Open
Abstract
From AD 1347 to AD 1353, the Black Death killed tens of millions of people in Europe, leaving misery and devastation in its wake, with successive epidemics ravaging the continent until the 18(th) century. The etiology of this disease has remained highly controversial, ranging from claims based on genetics and the historical descriptions of symptoms that it was caused by Yersinia pestis to conclusions that it must have been caused by other pathogens. It has also been disputed whether plague had the same etiology in northern and southern Europe. Here we identified DNA and protein signatures specific for Y. pestis in human skeletons from mass graves in northern, central and southern Europe that were associated archaeologically with the Black Death and subsequent resurgences. We confirm that Y. pestis caused the Black Death and later epidemics on the entire European continent over the course of four centuries. Furthermore, on the basis of 17 single nucleotide polymorphisms plus the absence of a deletion in glpD gene, our aDNA results identified two previously unknown but related clades of Y. pestis associated with distinct medieval mass graves. These findings suggest that plague was imported to Europe on two or more occasions, each following a distinct route. These two clades are ancestral to modern isolates of Y. pestis biovars Orientalis and Medievalis. Our results clarify the etiology of the Black Death and provide a paradigm for a detailed historical reconstruction of the infection routes followed by this disease.
Collapse
Affiliation(s)
- Stephanie Haensch
- Institute for Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - Raffaella Bianucci
- Laboratory of Criminalistic Sciences Department of Anatomy, Pharmacology and Legal Medicine, University of Turin, Turin, Italy
- Unité d'Anthropologie Bioculturelle, Faculté de Medecine, University of Mediterranean-CNRS-EFS, Marseille, France
| | - Michel Signoli
- Unité d'Anthropologie Bioculturelle, Faculté de Medecine, University of Mediterranean-CNRS-EFS, Marseille, France
- Centre d'Études Préhistoire, Antiquité, Moyen-âge, UMR 6130 CNRS–250 University of Nice, Valbonne, France
| | - Minoarisoa Rajerison
- Center for Plague, Institute Pasteur de Madagascar, World Health Organization Collaborating, Antananarivo, Madagascar
| | - Michael Schultz
- Department of Anatomy and Embryology Medical Faculty, Georg-August University, Göttingen, Germany
| | - Sacha Kacki
- Inrap, Villeneuve-d'Ascq Archaeological Center, Villeneuve-d'Ascq, France
- Laboratoire d'Anthropologie des Populations du Passé, Université Bordeaux 1, Talence, France
| | - Marco Vermunt
- Department of Monuments and Archaeology, Municipality of Bergen op Zoom, Bergen op Zoom, The Netherlands
| | - Darlene A. Weston
- Barge's Anthropologica, Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Archaeological Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Derek Hurst
- Worcestershire Historic Environment and Archaeology Service, Worcestershire County Council, Worcester, United Kingdom
| | - Mark Achtman
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | - Barbara Bramanti
- Institute for Anthropology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
44
|
Ayyadurai S, Sebbane F, Raoult D, Drancourt M. Body lice, yersinia pestis orientalis, and black death. Emerg Infect Dis 2010; 16:892-3. [PMID: 20409400 PMCID: PMC2953993 DOI: 10.3201/eid1605.091280] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol 2009; 7:813-21. [PMID: 19820723 DOI: 10.1038/nrmicro2219] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of human civilizations and global commerce has led to the emergence and worldwide circulation of many infectious diseases. Anthrax, plague and tularaemia are three zoonotic diseases that have been intensely studied through genome characterization of the causative species and phylogeographical analyses. A few highly fit genotypes in each species represent the causative agents for most of the observed disease cases. Together, mutational and selective forces create highly adapted pathogens, but this must be coupled with ecological opportunities for global expansion. This Review describes the distributions of the bacteria that cause anthrax, plague and tularaemia and investigates the forces that created clonal structures in these species.
Collapse
|
46
|
DeWitte SN. The effect of sex on risk of mortality during the Black Death in London, A.D. 1349-1350. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 139:222-34. [DOI: 10.1002/ajpa.20974] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M. Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (southeastern France, 16th-18th centuries). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:361-7. [PMID: 18350578 DOI: 10.1002/ajpa.20818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A rapid diagnostic test (RDT) that detects Yersinia pestis F1 antigen was applied to 28 putative plague victims exhumed from seven burial sites in southeastern France dating to the 16th-18th centuries. Yersinia pestis F1 antigen was detected in 19 of the 28 (67.9%) samples. The 27 samples used as negative controls yielded negative results. Soil samples taken from archeological sites related to both positive and negative samples tested negative for F1 antigen. The detection threshold of the RDT for plague (0.5 ng/ml) is sufficient for a preliminary retrospective diagnosis of Y. pestis infection in human remains. The high specificity and sensitivity of the assay were confirmed. For two sites positive to F1 antigen (Lambesc and Marseille), Y. pestis-specific DNA (pla gene) had been identified previously by PCR-sequence based analyses. Specifically, the positive results for two samples, from the Lambesc cemetery and the Marseille pit burial, matched those previously reported using PCR. Independent analyses in Italy and France of different samples taken from the same burial sites (Draguignan and Martigues) led to the identification of both Y. pestis F1 antigen and Y. pestis pla and gplD genes. These data are clear evidence of the presence of Y. pestis in the ancient human remains examined in this study.
Collapse
Affiliation(s)
- Raffaella Bianucci
- Università di Torino, Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Antropologia, 10123 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Bianucci R, Rahalison L, Ferroglio E, Massa ER, Signoli M. [A rapid diagnostic test for plague detects Yersinia pestis F1 antigen in ancient human remains]. C R Biol 2007; 330:747-54. [PMID: 17905394 DOI: 10.1016/j.crvi.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
A rapid diagnostic dipstick test (RDT) that detects Yersinia pestis F1 antigen has been recently applied on 18 putative plague victims exhumed from four archaeological burial sites in southeastern France dating back to the 16(th), 17(th) and 18(th) centuries. The Y. pestis antigen F1 was detected in 12 ancient samples out of 18 (67%). Negative controls confirmed their negativity (100%). Our results emphasize that the detection threshold of the RDT for plague (0.5 ng/ml) is sufficient for a first retrospective diagnosis of Y. pestis infection in ancient remains, and confirm the high specificity and sensitivity of the assay. Double-blind analyses performed by using two different techniques (RDT and 'suicide PCR') led us to the identification of the Y. pestis F1 antigen and the Y. pestis pla and gplD genes. These data provide clear evidence of the presence of Y. pestis in the examined specimens.
Collapse
Affiliation(s)
- Raffaella Bianucci
- Laboratorio di Antropologia, Dipartimento di Biologia Animale e dell'Uomo, Università di Torino, Via Accademia Albertina, 13, 10123 Torino, Italie.
| | | | | | | | | |
Collapse
|