1
|
Andreani J, Barrassi L, Davoust B, La Scola B. Evidence of an environmental reservoir for emergent Mycobacterium colombiense. New Microbes New Infect 2020; 35:100666. [PMID: 32280480 PMCID: PMC7139152 DOI: 10.1016/j.nmni.2020.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/06/2020] [Indexed: 10/31/2022] Open
Abstract
Mycobacterium colombiense, which belongs to the M. avium complex, is reported to have been isolated from cases of disseminated infection in both immunocompromised and immunocompetent patients. During the isolation of protists from water samples in French Guyana, we co-isolated a flagellated green alga (Polytoma sp.) and a mycobacterium identified as M. colombiense.
Collapse
Affiliation(s)
- J Andreani
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - L Barrassi
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - B Davoust
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - B La Scola
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
2
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
3
|
Schlusselhuber M, Humblot V, Casale S, Méthivier C, Verdon J, Leippe M, Berjeaud JM. Potent antimicrobial peptides against Legionella pneumophila and its environmental host, Acanthamoeba castellanii. Appl Microbiol Biotechnol 2015; 99:4879-91. [PMID: 25592737 DOI: 10.1007/s00253-015-6381-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022]
Abstract
Legionella pneumophila, the major causative agent of Legionnaires' disease, is most often found in the environment in close association with free-living amoebae, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. In the present study, we evaluated the anti-Legionella and anti-Acanthamoeba activities of three alpha-helical antimicrobial peptides (AMPs), namely, NK-2, Ci-MAM-A24, and Ci-PAP-A22, already known for the extraordinary efficacy against other microbes. Our data represent the first demonstration of the activity of a particular AMP against both the human facultative intracellular pathogen L. pneumophila and its pathogenic host, Acanthamoeba castellanii. Interestingly, the most effective peptide, Ci-MAM-A24, was also found to reduce the Legionella cell number within amoebae. Accordingly, this peptide was immobilized on gold surfaces to assess its antimicrobial activity. Surfaces were characterized, and activity studies revealed that the potent bactericidal activity of the peptide was conserved after its immobilization. In the frame of elaborating anti-Legionella surfaces, Ci-MAM-A24 represents, by its direct and indirect activity against Legionella, a potent peptide template for biological control of the bacterium in plumbings.
Collapse
Affiliation(s)
- Margot Schlusselhuber
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Delafont V, Mougari F, Cambau E, Joyeux M, Bouchon D, Héchard Y, Moulin L. First evidence of amoebae-mycobacteria association in drinking water network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11872-82. [PMID: 25247827 DOI: 10.1021/es5036255] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Free-living amoebae are protozoa ubiquitously found in water systems. They mainly feed on bacteria by phagocytosis, but some bacterial species are able to resist or even escape this lethal process. Among these amoeba resistant bacteria are numerous members of the genus Mycobacterium. Nontuberculous Mycobacteria (NTM) are opportunistic pathogens that share the same ecological niches as amoebae. While several studies have demonstrated the ability of these bacteria to colonise and persist within drinking water networks, there is also strong suspicion that mycobacteria could use amoebae as a vehicle for protection and even replication. We investigated here the presence of NTM and FLA on a drinking water network during an all year round sampling campaign. We observed that 87.6% of recovered amoebal cultures carried high numbers of NTM. Identification of these amoeba and mycobacteria strains indicated that the main genera found in drinking water networks, that is, Acanthamoeba, Vermamoeba, Echinamoeba, and Protacanthamoeba are able to carry and likely to allow replication of several environmental and potentially pathogenic mycobacteria including M. llatzerense and M. chelonae. Direct Sanger sequencing as well as pyrosequencing of environmental isolates demonstrated the frequent association of mycobacteria and FLA, as they are part of the most represented genera composing amoebae's microbiome. This is the first time that an association between FLA and NTM is observed in water networks, highlighting the importance of FLA in the ecology of NTM.
Collapse
Affiliation(s)
- Vincent Delafont
- Université de Poitiers , Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Poitiers 86000, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Torvinen E, Suomalainen S, Paulin L, Kusnetsov J. Mycobacteria in Finnish cooling tower waters. APMIS 2013; 122:353-8. [PMID: 23937212 DOI: 10.1111/apm.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/16/2013] [Indexed: 11/30/2022]
Abstract
Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination.
Collapse
Affiliation(s)
- Eila Torvinen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | | | | | | |
Collapse
|
6
|
Calvo L, Gregorio I, García A, Fernández MT, Goñi P, Clavel A, Peleato ML, Fillat MF. A new pentaplex-nested PCR to detect five pathogenic bacteria in free living amoebae. WATER RESEARCH 2013; 47:493-502. [PMID: 23168310 DOI: 10.1016/j.watres.2012.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Changes in water use and anthropogenic activity have major impacts on the quality of natural aquatic ecosystems, water distribution and wastewater plants. One of the main problems is the presence of some pathogenic microorganisms that are resistant to disinfection procedures when they are hosted by free living amoeba and that in many cases are hardly detectable by culture-based procedures. In this work we report a sensitive, low-cost procedure consisting of a pentaplex-nested PCR that allows simultaneous detection of Legionella pneumophila, Mycobacterium spp., Pseudomonas spp., Vibrio cholerae and the microcystin-producing cyanobacteria Microcystis aeruginosa. The method has been used to detect the presence of these pathogenic bacteria in water and inside free living amoeba. Its validation in 72 samples obtained from different water sources from Aragon (Spain) evidences that Mycobacterium and Pseudomonas spp are prevailing as amoeba-resistant bacteria.
Collapse
Affiliation(s)
- L Calvo
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ngwenya N, Ncube EJ, Parsons J. Recent advances in drinking water disinfection: successes and challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 222:111-70. [PMID: 22990947 DOI: 10.1007/978-1-4614-4717-7_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality, it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.
Collapse
Affiliation(s)
- Nonhlanhla Ngwenya
- Scientific Services Division, Rand Water, Johannesburg, 1170 2000 South Africa.
| | | | | |
Collapse
|
8
|
Camarena Miñana JJ, González Pellicer R. Micobacterias atípicas y su implicación en patología infecciosa pulmonar. Enferm Infecc Microbiol Clin 2011; 29 Suppl 5:66-75. [DOI: 10.1016/s0213-005x(11)70046-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Thibeaut S, Levy PY, Pelletier ML, Drancourt M. Mycobacterium conceptionense infection after breast implant surgery, France. Emerg Infect Dis 2010; 16:1180-1. [PMID: 20587205 PMCID: PMC3321890 DOI: 10.3201/eid1607.090771] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Adrados B, Julián E, Codony F, Torrents E, Luquin M, Morató J. Prevalence and concentration of non-tuberculous mycobacteria in cooling towers by means of quantitative PCR: a prospective study. Curr Microbiol 2010; 62:313-9. [PMID: 20640853 DOI: 10.1007/s00284-010-9706-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
There is an increasing level of interest in non-tuberculous mycobacteria (NTM) due to the increasing reported rates of diseases caused by them. Although it is well known that NTM are widely distributed in the environment it is necessary to identify its reservoirs to prevent possible infections. In this study, we aimed to investigate the occurrence and levels of NTM in cooling towers to provide evidences for considering these settings as possible sources of respiratory infections. In the current study, we detected and quantified the presence of NTM by means of a rapid method in water samples taken from 53 cooling towers of an urban area (Barcelona, Spain). A genus-specific quantitative PCR (Q-PCR) assay with a quantification limit (QL) of 500 cells l(-1) was used. 56% (30) of samples were positive with a concentration range from 4.6 × 10(3) to 1.79 × 10(6) cells l(-1). In some cases (9/30), samples were positive but with levels below the QL. The colonization rate confirmed that cooling towers could be considered as a potential reservoir for NTM. This study also evaluated Q-PCR as a useful method to detect and quantify NTM in samples coming from environmental sources.
Collapse
Affiliation(s)
- Bárbara Adrados
- Laboratori de Microbiologia Sanitària i Mediambiental, Departament d'Optica i Optometria, Universitat Politècnica de Catalunya, Edifici Gaia - Pg. Ernest Lluch/Rambla Sant Nebridi, 08222, Terrassa, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. Appl Environ Microbiol 2010; 76:6017-9. [PMID: 20639378 DOI: 10.1128/aem.00843-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tap and shower water at two locations in the Netherlands was examined for the presence of rapidly growing nontuberculous mycobacteria. Cultures yielded Mycobacterium peregrinum, M. salmoniphilum, M. llatzerense, M. septicum, and three potentially novel species, a distribution different from that in clinical samples.
Collapse
|
12
|
Thomas V, McDonnell G, Denyer SP, Maillard JY. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 2010; 34:231-59. [DOI: 10.1111/j.1574-6976.2009.00190.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Abstract
Nontuberculous mycobacterial (NTM) infections are caused by environmental mycobacteria. Patients with pulmonary NTM disease usually have predisposing lung abnormalities. Diagnostic methods are evolving. Treatment is largely empiric. Data were extracted from peer reviewed publications, guidelines, and case series. Progressive NTM lung disease should be treated. Multidrug regimens are mostly macrolide based and are occasionally complemented by lung resection. Disease persistence and relapse are not uncommon and are a greater problem with so-called rapid-grower NTM infections. Some of the issues considered in this review are: the role of antibiotic susceptibility testing in predicting treatment effectiveness, optimal drug combinations, daily vs. intermittent dosing intervals for different NTM infections and disease severity, when the goal of cure should be replaced with observation or palliation, and patient selection for surgery. Future needs for development and research include improved epidemiology, definition of genetic and other risk factors, definition of predictors of treatment outcome, multicenter treatment studies, new drug discovery and animal models of disease and treatment.
Collapse
Affiliation(s)
- James L Cook
- Immunology and International Medicine, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Abstract
Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
15
|
Salah IB, Ghigo E, Drancourt M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 2009; 15:894-905. [PMID: 19845701 DOI: 10.1111/j.1469-0691.2009.03011.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium species evolved from an environmental recent common ancestor by reductive evolution and lateral gene transfer. Strategies selected through evolution and developed by mycobacteria resulted in resistance to predation by environmental unicellular protists, including free-living amoebae. Indeed, mycobacteria are isolated from the same soil and water environments as are amoebae, and experimental models using Acanthamoeba spp. and Dictyostelium discoideum were exploited to analyse the mechanisms for intracellular survival. Most of these mechanisms have been further reproduced in macrophages for mycobacteria regarded as opportunistic and obligate pathogens. Amoebal cysts may protect intracellular mycobacteria against adverse conditions and may act as a vector for mycobacteria. The latter hypothesis warrants further environmental and clinical studies to better assess the role of free-living amoebae in the epidemiology of infections caused by mycobacteria.
Collapse
Affiliation(s)
- I B Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS 6236 IRD 198, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
16
|
Abstract
It has become apparent that Mycobacterium mucogenicum isolates recovered from clinical samples are more diverse than was previously realized and include an increasing number of emerging pathogens, as depicted by multilocus sequence analysis. Most clinically significant cases of those organisms involved catheter-related infections. They are susceptible to most antimicrobial agents, but like other rapidly growing mycobacteria, they are resistant to first-line antituberculous agents. A review of the cases of M. mucogenicum complex infection in the literature is addressed here, as well as two additional cases of the closely related species Mycobacterium aubagnense.
Collapse
Affiliation(s)
- T Adékambi
- Division of Infectious Diseases, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
van Ingen J, Boeree M, Dekhuijzen PR, van Soolingen D. Environmental sources of rapid growing nontuberculous mycobacteria causing disease in humans. Clin Microbiol Infect 2009; 15:888-93. [DOI: 10.1111/j.1469-0691.2009.03013.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Pagnier I, Merchat M, La Scola B. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol 2009; 4:615-29. [DOI: 10.2217/fmb.09.25] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires’ disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system’s construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.
Collapse
Affiliation(s)
- Isabelle Pagnier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE) CNRS UMR 6236, Faculté de Médecine de Marseille, 13385 Marseille Cedex 05, France
| | | | - Bernard La Scola
- Unité de Recherche Sur Les Maladies Infectieuses et Tropicales Émergentes (URMITE) CNRS UMR 6236, Faculté de Médecine de Marseille, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|