1
|
Alexandrova L, Haque F, Rodriguez P, Marrazzo AC, Grembi JA, Ramachandran V, Hryckowian AJ, Adams CM, Siddique MSA, Khan AI, Qadri F, Andrews JR, Rahman M, Spormann AM, Schoolnik GK, Chien A, Nelson EJ. Identification of Widespread Antibiotic Exposure in Patients With Cholera Correlates With Clinically Relevant Microbiota Changes. J Infect Dis 2020; 220:1655-1666. [PMID: 31192364 PMCID: PMC6782107 DOI: 10.1093/infdis/jiz299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A first step to combating antimicrobial resistance in enteric pathogens is to establish an objective assessment of antibiotic exposure. Our goal was to develop and evaluate a liquid chromatography-ion trap mass spectrometry (LC/MS) method to determine antibiotic exposure in patients with cholera. METHODS A priority list for targeted LC/MS was generated from medication-vendor surveys in Bangladesh. A study of patients with and those without cholera was conducted to collect and analyze paired urine and stool samples. RESULTS Among 845 patients, 11% (90) were Vibrio cholerae positive; among these 90 patients, analysis of stool specimens revealed ≥1 antibiotic in 86% and ≥2 antibiotics in 52%. Among 44 patients with cholera and paired urine and stool specimens, ≥1 antibiotic was detected in 98% and ≥2 antibiotics were detected in 84%, despite 55% self-reporting medication use. Compared with LC/MS, a low-cost antimicrobial detection bioassay lacked a sufficient negative predictive value (10%; 95% confidence interval, 6%-16%). Detection of guideline-recommended antibiotics in stool specimens did (for azithromycin; P = .040) and did not (for ciprofloxacin) correlate with V. cholerae suppression. A nonrecommended antibiotic (metronidazole) was associated with decreases in anaerobes (ie, Prevotella organisms; P < .001). CONCLUSION These findings suggest that there may be no true negative control group when attempting to account for antibiotic exposure in settings like those in this study.
Collapse
Affiliation(s)
- Ludmila Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Farhana Haque
- Institute of Epidemiology, Disease Control, and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Patricia Rodriguez
- Department of Pediatrics, University of Florida, Gainesville.,Department of Environmental and Global Health, University of Florida, Gainesville
| | - Ashton C Marrazzo
- Department of Pediatrics, University of Florida, Gainesville.,Department of Environmental and Global Health, University of Florida, Gainesville
| | - Jessica A Grembi
- Department of Civil and Environmental Engineering, School of Medicine, Stanford University, California
| | - Vasavi Ramachandran
- Department of Pediatrics, School of Medicine, Stanford University, California
| | - Andrew J Hryckowian
- Department of Microbiology, School of Medicine, Stanford University, California
| | - Christopher M Adams
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Md Shah A Siddique
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason R Andrews
- Department of Medicine, School of Medicine, Stanford University, California
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control, and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, School of Medicine, Stanford University, California
| | - Gary K Schoolnik
- Department of Medicine, School of Medicine, Stanford University, California
| | - Allis Chien
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Eric J Nelson
- Department of Pediatrics, School of Medicine, Stanford University, California
| |
Collapse
|
2
|
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clin Microbiol Rev 2017; 31:31/1/e00087-17. [PMID: 29187397 DOI: 10.1128/cmr.00087-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brachyspira pilosicoli is a slow-growing anaerobic spirochete that colonizes the large intestine. Colonization occurs commonly in pigs and adult chickens, causing colitis/typhlitis, diarrhea, poor growth rates, and reduced production. Colonization of humans also is common in some populations (individuals living in village and peri-urban settings in developing countries, recent immigrants from developing countries, homosexual males, and HIV-positive patients), but the spirochete rarely is investigated as a potential human enteric pathogen. In part this is due to its slow growth and specialized growth requirements, meaning that it is not detectable in human fecal samples using routine diagnostic methods. Nevertheless, it has been identified histologically attached to the colon and rectum in patients with conditions such as chronic diarrhea, rectal bleeding, and/or nonspecific abdominal discomfort, and one survey of Australian Aboriginal children showed that colonization was significantly associated with failure to thrive. B. pilosicoli has been detected in the bloodstream of elderly patients or individuals with chronic conditions such as alcoholism and malignancies. This review describes the spirochete and associated diseases. It aims to encourage clinicians and clinical microbiologists to consider B. pilosicoli in their differential diagnoses and to develop and use appropriate diagnostic protocols to identify the spirochete in clinical specimens.
Collapse
|
3
|
Mappley LJ, La Ragione RM, Woodward MJ. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 2013; 168:245-60. [PMID: 24355534 DOI: 10.1016/j.vetmic.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £ 18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK.
| | - Roberto M La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
| |
Collapse
|
4
|
Neo E, La T, Phillips ND, Alikani MY, Hampson DJ. The pathogenic intestinal spirochaete Brachyspira pilosicoli forms a diverse recombinant species demonstrating some local clustering of related strains and potential for zoonotic spread. Gut Pathog 2013; 5:24. [PMID: 23957888 PMCID: PMC3751851 DOI: 10.1186/1757-4749-5-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachyspira pilosicoli is an anaerobic spirochaete that can colonizes the large intestine of many host species. Infection is particularly problematic in pigs and adult poultry, causing colitis and diarrhea, but it is also known to result in clinical problems in human beings. Despite the economic importance of the spirochaete as an animal pathogen, and its potential as a zoonotic agent, it has not received extensive study. METHODS A multilocus sequence typing (MLST) method based on the scheme used for other Brachyspira species was applied to 131 B. pilosicoli isolates originating from different host species and geographical areas. A variety of phylogenetic trees were constructed and analyzed to help understand the data. RESULTS The isolates were highly diverse, with 127 sequence types and 123 amino acid types being identified. Large numbers (50-112) of alleles were present at each locus, with all loci being highly polymorphic. The results of Shimodaira-Hasegawa tests identified extensive genetic recombination, although the calculated standardized index of association value (0.1568; P <0.0005) suggested the existence of some clonality. Strains from different host species and geographical origins generally were widely distributed throughout the population, although in nine of the ten cases where small clusters of related isolates occurred these were from the same geographical areas or farms/communities, and from the same species of origin. An exception to the latter was a cluster of Australian isolates originating from pigs, chickens and a human being, suggesting the likelihood of relatively recent transmission of members of this clonal group between species. CONCLUSIONS The strongly recombinant population structure of B. pilosicoli contrasts to the more highly clonal population structures of the related species Brachyspira hyodysenteriae and Brachyspira intermedia, both of which are specialized enteric pathogens of pigs and poultry. The genomic plasticity of B. pilosicoli may help to explain why it has been able to adapt to colonize the large intestines of a wider range of hosts compared to other Brachyspira species. The identification of a clonal group of isolates that had been recovered from different host species, including a human being, suggests that zoonotic transmission by B. pilosicoli may occur in nature. Evidence for local transmission between the same host species also was obtained.
Collapse
Affiliation(s)
- Eugene Neo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150 Western Australia, Australia.
| | | | | | | | | |
Collapse
|
5
|
Neo E, La T, Phillips ND, Hampson DJ. Multiple locus variable number tandem repeat analysis (MLVA) of the pathogenic intestinal spirochaete Brachyspira pilosicoli. Vet Microbiol 2013; 163:299-304. [PMID: 23391437 DOI: 10.1016/j.vetmic.2012.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/27/2022]
Abstract
Brachyspira pilosicoli is an anaerobic intestinal spirochaete that colonizes the large intestine of various host species, in which it may induce diarrhoea, poor growth rates and a localized colitis known as intestinal (or colonic) spirochaetosis. The spirochaete is considered to be potentially zoonotic. The purpose of the current study was to develop a multiple-locus variable number tandem repeat analysis (MLVA) method as a simple and rapid tool to investigate the molecular epidemiology of B. pilosicoli. The genomic sequence of B. pilosicoli strain 95/1000 was analyzed for potential tandem repeats using the default parameters of the Tandem Repeat Finder program. A total of 22 repeat loci were identified and tested for their presence and variability on a set of 10 B. pilosicoli isolates. Five loci that were present in most isolates and that showed evidence of allelic variation were selected and used with a collection of 119 isolates from different host species and geographical locations. Not all the isolates amplified at all loci, but using the available data a total of 103 VNTR profiles were generated. The discriminatory power of this method was 0.976. A phylogenetic tree constructed from the allelic profiles confirmed the diversity of B. pilosicoli, and the general lack of clustering of strains based on species of origin or geographic origin. Some isolates with known epidemiological links were found to be identical or highly similar. The MLVA method was simple and easy to use, and could readily differentiate between strains of B. pilosicoli. MLVA should prove to be a useful tool for rapid identification of relationships between B. pilosicoli isolates in epidemiological investigations.
Collapse
Affiliation(s)
- Eugene Neo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | |
Collapse
|
6
|
Naresh R, Hampson DJ. Exposure to norepinephrine enhances Brachyspira pilosicoli growth, attraction to mucin and attachment to Caco-2 cells. Microbiology (Reading) 2011; 157:543-547. [DOI: 10.1099/mic.0.044594-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brachyspira pilosicoli is an anaerobic intestinal spirochaete that colonizes the large intestine of a variety of species of birds and mammals, including human beings. Colonization may result in a mild colitis and diarrhoea in a condition known as ‘intestinal spirochaetosis’. The catecholamine norepinephrine (NE), which is known to influence the behaviour of many bacterial species, may be present in the colon. The purpose of the current study was to determine whether exposure of B. pilosicoli to NE would influence its in vitro behaviour in assays that may reflect in vivo colonization potential. B. pilosicoli strain 95/1000 was used in all the assays. Addition of NE at a concentration of 0.05 mM to B. pilosicoli growing in anaerobic broth significantly increased spirochaete numbers after 4 days incubation. The effect of higher concentrations of NE was not significant. Exposure to 0.05 mM NE, but not to higher concentrations, also resulted in significantly more spirochaete cells entering capillary tubes containing 4 % porcine gastric mucin than occurred with untreated cultures. When NE was added to chemotaxis buffer in capillary tubes, significantly more spirochaetes were attracted to the buffer containing NE at 0.1, 0.5 and 1.0 mM than to buffer containing 0.05 mM NE, or when no NE was added. Exposure of B. pilosicoli cultures to 0.05 mM NE prior to incubation with Caco-2 monolayers resulted in more attachment to the monolayer than occurred with non-exposed cultures. These results show that at higher concentrations, NE acts as a chemoattractant for B. pilosicoli, and at 0.05 mM it increases the spirochaete's growth rate, attraction to mucin and rate of attachment to cultured enterocytes. These activities are likely to enhance the ability of B. pilosicoli to colonize, and may be induced by conditions that increase NE concentrations in the intestinal tract, such as the stresses associated with crowding.
Collapse
Affiliation(s)
- Ram Naresh
- Animal Research Institute, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - David J. Hampson
- Animal Research Institute, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
7
|
Wanchanthuek P, Bellgard MI, La T, Ryan K, Moolhuijzen P, Chapman B, Black M, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ. The complete genome sequence of the pathogenic intestinal spirochete Brachyspira pilosicoli and comparison with other Brachyspira genomes. PLoS One 2010; 5:e11455. [PMID: 20625514 PMCID: PMC2897892 DOI: 10.1371/journal.pone.0011455] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/13/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes "intestinal spirochetosis", a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. METHODOLOGY/PRINCIPAL FINDINGS The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. CONCLUSIONS/SIGNIFICANCE The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence.
Collapse
Affiliation(s)
- Phatthanaphong Wanchanthuek
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
- Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
| | - Matthew I. Bellgard
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Tom La
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| | - Karon Ryan
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Michael Black
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - David Schibeci
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Nyree D. Phillips
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| | - David J. Hampson
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Naresh R, Song Y, Hampson DJ. The intestinal spirochete Brachyspira pilosicoli attaches to cultured Caco-2 cells and induces pathological changes. PLoS One 2009; 4:e8352. [PMID: 20020053 PMCID: PMC2791440 DOI: 10.1371/journal.pone.0008352] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brachyspira pilosicoli is an anaerobic spirochete that has received relatively little study, partly due to its specialized culture requirements and slow growth. This bacterium colonizes the large intestine of various species, including humans; typically, a dense layer of spirochete cells may be found intimately attached by one cell end to the surface of colonic enterocytes. Colonized individuals may develop colitis, but the mechanisms involved are not understood. The current study aimed to develop an in vitro model to investigate this process. METHODOLOGY/PRINCIPAL FINDINGS Four strains of B. pilosicoli were incubated at a high multiplicity of infection with monolayers of a human colonic adenocarcinoma cell line (Caco-2 cells). One strain isolated from a pig (95/1000) and one from a human (WesB) attached to the monolayers. Colonization increased with time, with the Caco-2 cell junctions being the initial targets of attachment. By electron microscopy, individual spirochete cells could be seen to have one cell end invaginated into the Caco-2 cell membranes, with the rest of the spirochete draped over the Caco-2 cell surface. After 6 h incubation, the monolayer was covered with a layer of spirochetes. Colonized monolayers demonstrated a time-dependent series of changes: staining with labelled phalloidin identified accumulation of actin at the cell junctions; ZO-1 staining revealed a loss of Caco-2 tight junction integrity; and Hoechst staining showed condensation and fragmentation of nuclear material consistent with apoptosis. Using quantitative reverse transcription PCR, the colonized monolayers demonstrated a significant up-regulation of interleukin-1beta (IL-1beta) and IL-8 expression. B. pilosicoli sonicates caused significant up-regulation of IL-1beta, TNF-alpha, and IL-6, but culture supernatants and non-pathogenic Brachyspira innocens did not alter cytokine expression. CONCLUSIONS/SIGNIFICANCE The changes induced in the Caco-2 cells provide evidence that B. pilosicoli has pathogenic potential, and give insights into the likely in vivo pathogenesis.
Collapse
Affiliation(s)
- Ram Naresh
- Animal Research Institute, Murdoch University, Murdoch, Australia
| | - Yong Song
- Animal Research Institute, Murdoch University, Murdoch, Australia
| | - David J. Hampson
- Animal Research Institute, Murdoch University, Murdoch, Australia
- * E-mail:
| |
Collapse
|
9
|
Hampson DJ, Ahmed N. Spirochaetes as intestinal pathogens: lessons from a Brachyspira genome. Gut Pathog 2009; 1:10. [PMID: 19405984 PMCID: PMC2680911 DOI: 10.1186/1757-4749-1-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 02/06/2023] Open
Abstract
Anaerobic spirochaetes of the genus Brachyspira have long been known as important gut pathogens of pigs, but increasingly they are recognised as causing disease in birds and other animal species, including human beings. The genome sequence of the major swine pathogen Brachyspira hyodysenteriae was recently published, and this revealed extensive genome optimisation that leads to adaptation to the complex environment of the colon. The genome sequences of other pathogenic and non-pathogenic Brachyspira species are becoming available, and this data will help to reveal how these species have evolved and adapted to varied lifestyles in the large intestines of different species, and why some but not others can induce colitis and diarrhoea.
Collapse
Affiliation(s)
- David J Hampson
- Animal Research Institute, School of Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | | |
Collapse
|