1
|
Bennett-Laso B, Berazay B, Muñoz G, Ariyama N, Enciso N, Braun C, Krüger L, Barták M, González-Aravena M, Neira V. Confirmation of highly pathogenic avian influenza H5N1 in skuas, Antarctica 2024. Front Vet Sci 2024; 11:1423404. [PMID: 39711804 PMCID: PMC11660801 DOI: 10.3389/fvets.2024.1423404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024] Open
Abstract
From December 2023 to March 2024, a surveillance program aiming to detect Highly Pathogenic Avian Influenza (HPAI) H5N1 was conducted on Antarctica territories, specifically at Fildes Peninsula (King George Island, Maritime Antarctic), and James Ross Island. At Fildes Peninsula, samples from marine birds and mammals were collected from four accessible sampling locations with significant animal colonies: Ardley Island, hosting a large concentration of Gentoo penguins (Pygoscelis papua); Ardley Cove, where small groups of likely non-breeding Chinstrap penguins (Pygoscelis antarcticus) were present; seal haul-out sites of Southern elephant (Mirounga leonina) and Weddell (Leptonycotes wedellii); and, a nesting site of Southern giant petrels (Macronectes giganteus). Additionally, six samples were collected from five dead skuas near the Lachman lakes on James Ross Island (63.7989S, 57.8105W) on March 3, 2024. Despite collecting a total of 943 samples from Fildes Peninsula, all results tested negative for HPAI, and no animals displayed clinical signs or behaviors consistent with HPAI infection. However, all skua samples from James Ross Island tested positive for HPAI H5N1 clade 2.3.4.4 by specific real-time RT-PCR reactions, confirming the first recorded HPAI-related mortality event in Antarctica (south of 60°S), specifically in skuas. Further research is necessary to genetically characterize the virus and better understand the role of skuas in viral dissemination in Antarctica.
Collapse
Affiliation(s)
- Benjamín Bennett-Laso
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Bárbara Berazay
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Magister en Ciencias Animales y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Gabriela Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Nikita Enciso
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Christina Braun
- Polar & Bird Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Lucas Krüger
- Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Miloš Barták
- Department of Experimental Biology, Masaryk University, Faculty of Science, Brno, Czechia
| | | | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Abstract
Although influenza A and B viruses are primarily known as respiratory viruses and mainly infected only the upper respiratory tract in humans, patients with influenza often develop signs and symptoms that are not due to the respiratory system. Frequently individuals with influenza develop headaches, meningismus, and even seizures in addition to their typical respiratory symptoms. In the past decades, influenza viruses have also been associated with serious non-respiratory signs. The famous 1918 strain of influenza was associated with von Economo's encephalitis lethargica and postencephalitic parkinsonism. In the 1960s influenza virus infections in children were associated with Reye's syndrome characterized often by fatty non-inflammatory hepatic disease and an encephalopathy with marked non-inflammatory cerebral edema. Intermittently children with influenza develop focal myalgia and myositis. Guillain–Barré syndrome was epidemiologically associated with the 1978 killed influenza vaccine but not subsequent vaccines. Although occasional children with influenza have developed encephalopathy, from 2000 through 2004 there was an increase in the number of serious cases of acute necrotizing encephalopathy accompanying infection with the influenza A 2009 strain. The current H5N1 strain of bird influenza occasionally infects humans with a high mortality rate and some appear to have central nervous signs. This chapter explores what is known about these influenza neurologic associations.
Collapse
Affiliation(s)
- Larry E Davis
- Neurology Service, New Mexico VA Health Care System and Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Fredrick Koster
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | |
Collapse
|
3
|
Lei F, Shi W. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Curr Genomics 2011; 12:466-74. [PMID: 22547954 PMCID: PMC3219842 DOI: 10.2174/138920211797904052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/27/2011] [Accepted: 08/10/2011] [Indexed: 12/24/2022] Open
Abstract
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.
Collapse
Affiliation(s)
- Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Kong P, Kong Y, Jiang X, Wang X. Theoretical and practical exploration of vision building in human influenza pandemic prevention & control. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|