1
|
Yew WW, Chan DP, Chang KC, Zhang Y. Does oxidative stress contribute to antituberculosis drug resistance? J Thorac Dis 2019; 11:E100-E102. [PMID: 31463157 DOI: 10.21037/jtd.2019.06.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Denise P Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Zheng Q. A cautionary note on the mutation frequency in microbial research. Mutat Res 2018; 809:51-55. [PMID: 29705518 DOI: 10.1016/j.mrfmmm.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
The mutation frequency, also known as the mutant frequency, is an unnormalized quantity, and its normalized counterpart is the mutation rate. Due to historical reasons, the mutation frequency has been a predominant yardstick of microbial mutability in the field of mutator identification. While the mean mutation frequency is infamously erratic, replacing it with the median mutation frequency is not an effective remedy. By encouraging investigators to substitute mutation rates for mutation frequencies in microbial research, this paper directs attention to substantial open problems such as false positive control and massive nonmutant cell death.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 212 Adriance Lab Road, College Station, TX 77843, United States.
| |
Collapse
|
3
|
Magis-Escurra C, Anthony RM, van der Zanden AGM, van Soolingen D, Alffenaar JWC. Pound foolish and penny wise-when will dosing of rifampicin be optimised? THE LANCET RESPIRATORY MEDICINE 2018; 6:e11-e12. [PMID: 29396032 DOI: 10.1016/s2213-2600(18)30044-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Cecile Magis-Escurra
- Radboud University Medical Centre -TB Expert Centre Dekkerswald, Nijmegen-Groesbeek, 6561KE, the Netherlands.
| | | | - Adri G M van der Zanden
- Department of Medical Microbiology, VieCuri Medical Center, Venlo, the Netherlands; Medical Microbiology, Laurentius Hospital, Roermond, the Netherlands; Laboratory of Medical Microbiology and Public Health, Hengelo, the Netherlands
| | | | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Centre Groningen, UMCG, Groningen, the Netherlands
| |
Collapse
|
4
|
New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State. Clin Microbiol Rev 2017; 31:31/1/e00060-17. [PMID: 29187395 DOI: 10.1128/cmr.00060-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We are far away from the days when tuberculosis (TB) accounted for 1 in 4 deaths during the 19th century. However, Mycobacterium tuberculosis complex (MTBC) strains are still the leading cause of morbidity and mortality by a single infectious disease, with 9.6 million cases and 1.5 million deaths reported. One-third of the world's population is estimated by the WHO to be infected with latent TB. During the last decade, several studies have aimed to define the characteristics of dormant bacteria in these latent infections. General features of the shift to a dormant state encompass several phenotypic changes that reduce metabolic activity. This low metabolic state is thought to increase the resistance of MTBC strains to host/environmental stresses, including antibiotic action. Once the stress ceases (e.g., interruption of treatment), dormant cells can reactivate and cause symptomatic disease again. Therefore, a proper understanding of dormancy could guide the rational development of new treatment regimens that target dormant cells, reducing later relapse. Here, we briefly summarize the latest data on the genetics involved in the regulation of dormancy and discuss new approaches to TB treatment.
Collapse
|
5
|
Yew WW, Leung CC, Zhang Y. Oxidative stress and TB outcomes in patients with diabetes mellitus? J Antimicrob Chemother 2017; 72:1552-1555. [PMID: 28204508 DOI: 10.1093/jac/dkx046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In patients with diabetes mellitus, TB treatment outcomes are poorer. Most parameters, when measured, reflect the slower bacteriological conversion from positivity to negativity and higher risks of disease relapse and mortality, as well as a greater propensity to develop drug-resistant TB. Aside from the well-known immunological dysfunction inherent to patients with diabetes mellitus, oxidative stress is likely a major underlying mechanism adversely impacting their TB treatment outcomes. Mycobacterium tuberculosis persisters, formed as a result of the core dormancy response to stress, possibly play a central role in this hypothesis. This hypothetical model also underscores the paramount importance of programmatic management of TB and diabetes mellitus, in collaboration, to improve the outcomes of patients with both diseases. The validity of these ideas could be further ascertained by laboratory and clinical research.
Collapse
Affiliation(s)
- Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Leung
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Anthony RM. Sputum Microscopy and Mycobacterium tuberculosis Infectiousness. J Infect Dis 2017; 216:507-508. [PMID: 28510701 DOI: 10.1093/infdis/jix231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard M Anthony
- Center for Infectious Disease Research, Diagnostics, and Perinatal Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
7
|
Zhou Y, van den Hof S, Wang S, Pang Y, Zhao B, Xia H, Anthony R, Ou X, Li Q, Zheng Y, Song Y, Zhao Y, van Soolingen D. Association between genotype and drug resistance profiles of Mycobacterium tuberculosis strains circulating in China in a national drug resistance survey. PLoS One 2017; 12:e0174197. [PMID: 28333978 PMCID: PMC5363926 DOI: 10.1371/journal.pone.0174197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/06/2017] [Indexed: 11/19/2022] Open
Abstract
We describe the population structure of a representative collection of 3,133 Mycobacterium tuberculosis isolates, collected within the framework of a national resistance survey from 2007 in China. Genotyping data indicate that the epidemic strains in China can be divided into seven major complexes, of which 92% belonged to the East Asian (mainly Beijing strains) or the Euro-American lineage. The epidemic Beijing strains in China are closely related to the Beijing B0/W148 strain earlier described in Russia and a large cluster of these strains has spread national wide. The density of Beijing strains is high in the whole of China (average 70%), but the highest prevalence was found North of the Yellow river. The Euro-American lineage consists of three sublineages (sublineage_1, 2, and 3) and is more prevalent in the South. Beijing lineage showed the highest cluster rate of 48% and a significantly higher level of resistance to rifampicin (14%, p<0.001), ethambutol (9%, p = 0.001), and ofloxacin (5%, p = 0.011). Within the Euro-American Lineage, sublineage_3 revealed the highest cluster rate (28%) and presented a significantly elevated level of resistance to streptomycin (44%, p<0.001). Our findings suggest that standardised treatment in this region may have contributed to the successful spread of certain strains: sublineage_3 in the Euro-American lineage may have thrived when streptomycin was used without rifampicin for treatment, while later under DOTS based treatment, in which rifampicin plays a key role, Beijing lineage appears to be spreading.
Collapse
Affiliation(s)
- Yang Zhou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, CC The Hague, The Netherlands
- Department of Global Health, Amsterdam Medical Center, Pietersbergweg 17, BM Amsterdam, The Netherlands
| | - Shengfen Wang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yu Pang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Bing Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Hui Xia
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Richard Anthony
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| | - Xichao Ou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Qiang Li
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yang Zheng
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yuanyuan Song
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yanlin Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
de Keijzer J, Mulder A, de Ru AH, van Soolingen D, van Veelen PA. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J Proteomics 2016; 150:9-17. [PMID: 27576137 DOI: 10.1016/j.jprot.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/05/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022]
Abstract
The spread of multidrug resistant Mycobacterium tuberculosis is one of the major challenges in tuberculosis control. In Eurasia, the spread of multidrug resistant tuberculosis is driven by the M. tuberculosis Beijing genotype. In this study, we examined whether selective advantages are present in the proteome of Beijing isolates that contribute to the emergence of this genotype. To this end, we compared the proteome of M. tuberculosis Beijing to that of M. tuberculosis H37Rv, both in the presence and absence of the first-line antibiotic rifampicin. During rifampicin exposure, both M. tuberculosis genotypes express proteins belonging to the DosR dormancy regulon, which induces a metabolically hypoactive-, drug tolerant phenotype. However, these markers of rifampicin tolerance were already more abundant in the M. tuberculosis Beijing isolate prior to drug exposure. To determine whether the a priori high abundance of specific proteins contribute to the formation of antibiotic resistance in M. tuberculosis Beijing, we quantified the abundance of 33 selected proteins in 27 clinical isolates from the five most common M. tuberculosis lineages using parallel reaction monitoring. The observed pre-existing high abundance of dormancy proteins in Beijing strains provides an evolutionary advantage that allows these strains to persist for prolonged periods during rifampicin treatment. SIGNIFICANCE M. tuberculosis is the leading cause of death by a bacterial infection worldwide. Treatment-regimen to eradicate this pathogen make use of the first-line antibiotic rifampicin, which is considered to be the cornerstone of modern day anti-tuberculosis treatment. Despite the potency of rifampicin, there is an increasing occurrence of rifampicin resistant mutants in a specific cluster of M. tuberculosis, the Beijing genotype. Using both a data dependent acquisition and a targeted proteomic approach we identified markers of rifampicin tolerance to be high abundant in members of the M. tuberculosis Beijing genotype, already prior drug exposure. The identification of this M. tuberculosis Beijing specific trait will contribute to improved diagnostics and treatment of M. tuberculosis.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands.
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands; Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500, HB, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| |
Collapse
|
9
|
Mieras L, Anthony R, van Brakel W, Bratschi MW, van den Broek J, Cambau E, Cavaliero A, Kasang C, Perera G, Reichman L, Richardus JH, Saunderson P, Steinmann P, Yew WW. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy. Infect Dis Poverty 2016; 5:46. [PMID: 27268059 PMCID: PMC4897814 DOI: 10.1186/s40249-016-0140-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Post-exposure prophylaxis (PEP) for leprosy is administered as one single dose of rifampicin (SDR) to the contacts of newly diagnosed leprosy patients. SDR reduces the risk of developing leprosy among contacts by around 60 % in the first 2–3 years after receiving SDR. In countries where SDR is currently being implemented under routine programme conditions in defined areas, questions were raised by health authorities and professional bodies about the possible risk of inducing rifampicin resistance among the M. tuberculosis strains circulating in these areas. This issue has not been addressed in scientific literature to date. To produce an authoritative consensus statement about the risk that SDR would induce rifampicin-resistant tuberculosis, a meeting was convened with tuberculosis (TB) and leprosy experts. The experts carefully reviewed and discussed the available evidence regarding the mechanisms and risk factors for the development of (multi) drug-resistance in M. tuberculosis with a view to the special situation of the use of SDR as PEP for leprosy. They concluded that SDR given to contacts of leprosy patients, in the absence of symptoms of active TB, poses a negligible risk of generating resistance in M. tuberculosis in individuals and at the population level. Thus, the benefits of SDR prophylaxis in reducing the risk of developing leprosy in contacts of new leprosy patients far outweigh the risks of generating drug resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Liesbeth Mieras
- Netherlands Leprosy Relief, P.O. Box 95005, 1090 HA, Amsterdam, The Netherlands.
| | | | - Wim van Brakel
- Netherlands Leprosy Relief, P.O. Box 95005, 1090 HA, Amsterdam, The Netherlands
| | | | | | | | | | - Christa Kasang
- The German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
| | | | - Lee Reichman
- New Jersey Medical School Global Tuberculosis Institute, New Jersey, USA
| | | | | | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Wing Wai Yew
- Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
de Keijzer J, Mulder A, de Beer J, de Ru AH, van Veelen PA, van Soolingen D. Mechanisms of Phenotypic Rifampicin Tolerance in Mycobacterium tuberculosis Beijing Genotype Strain B0/W148 Revealed by Proteomics. J Proteome Res 2016; 15:1194-204. [PMID: 26930559 DOI: 10.1021/acs.jproteome.5b01073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The "successful" Russian clone B0/W148 of Mycobacterium tuberculosis Beijing is well-known for its capacity to develop antibiotic resistance. During treatment, resistant mutants can occur that have inheritable resistance to specific antibiotics. Next to mutations, M. tuberculosis has several mechanisms that increase their tolerance to a variety of antibiotics. Insights in the phenotypic mechanisms that contribute to drug tolerance will increase our understanding of how antibiotic resistance develops in M. tuberculosis. In this study, we examined the (phospho)proteome dynamics in M. tuberculosis Beijing strain B0/W148 when exposed to a high dose of rifampicin; one of the most potent first-line antibiotics. A total of 2,534 proteins and 191 phosphorylation sites were identified, and revealed the differential regulation of DosR regulon proteins, which are necessary for the development of a dormant phenotype that is less susceptible to antibiotics. By examining independent phenotypic markers of dormancy, we show that persisters of in vitro rifampicin exposure entered a metabolically hypoactive state, which yields rifampicin and other antibiotics largely ineffective. These new insights in the role of protein regulation and post-translational modifications during the initial phase of rifampicin treatment reveal a shortcoming in the antituberculosis regimen that is administered to 8-9 million individuals annually.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Jessica de Beer
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands.,Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center , Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
11
|
Maitra A, Danquah CA, Scotti F, Howard TK, Kamil TK, Bhakta S. Tackling tuberculosis: Insights from an international TB Summit in London. Virulence 2015; 6:661-72. [PMID: 26151309 PMCID: PMC4720247 DOI: 10.1080/21505594.2015.1060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience.
Collapse
Affiliation(s)
- Arundhati Maitra
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Cynthia A Danquah
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Francesca Scotti
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tracey K Howard
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tengku K Kamil
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Sanjib Bhakta
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| |
Collapse
|