1
|
Funakoshi T, Yamada M, Ikeda K, Yokokawa K, Saito T, Iwahara N, Suzuki S, Kimura Y, Akiyama Y, Mikuni N, Hisahara S. A Case of Multiple Intracerebral Hemorrhages Due to Early-Onset Cerebral Amyloid Angiopathy With Alzheimer's Disease: Neuropathological Changes Three Decades After Childhood Neurosurgery. Cureus 2025; 17:e77700. [PMID: 39974219 PMCID: PMC11837224 DOI: 10.7759/cureus.77700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a disease in which amyloid beta (Aβ) is deposited in blood vessels and meninges in the brain. Cerebral amyloid angiopathy typically occurs in the elderly but is also known to occur in younger patients with a history of childhood head trauma or dura graft following neurosurgical procedures. The patient was a 39-year-old female who had undergone neurosurgery for an arachnoid cyst in the right temporal lobe at the age of two years. Severe headache, dizziness, and right leg weakness developed abruptly. The Aβ42/40 ratio had decreased in cerebrospinal fluid. Brain MRI showed multiple cerebral hemorrhages. Considering CAA, a brain biopsy was performed. Pathological examination showed severe CAA in many leptomeningeal and cortical vessels. We reported early-onset CAA after neurosurgery in childhood. In young patients with cerebral hemorrhages, it is necessary to consider early-onset CAA following childhood head trauma or neurosurgery.
Collapse
Affiliation(s)
- Takumi Funakoshi
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Minoru Yamada
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Kazuna Ikeda
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Kazuki Yokokawa
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Taro Saito
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Naotoshi Iwahara
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Syuuichirou Suzuki
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Sapporo, JPN
| | - Shin Hisahara
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo, JPN
| |
Collapse
|
2
|
Kunii M, Kishida H, Tada M, Okamoto M, Asano K, Nakamura H, Takahashi K, Hashiguchi S, Kubota S, Okubo M, Takeuchi H, Ueda N, Satoh K, Kitamoto T, Doi H, Tanaka F. A case report of an individual with Creutzfeldt-Jakob disease characterized by prolonged isolated thalamic lesions and rare MM2-cortical-type pathology. BMC Neurol 2024; 24:456. [PMID: 39578797 PMCID: PMC11583669 DOI: 10.1186/s12883-024-03958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (DWI) is essential for diagnosing Creutzfeldt-Jakob disease (CJD). Thalamic lesions are rarely detected by DWI in sporadic CJD (sCJD) cases with methionine homozygosity at polymorphic codon 129 (129MM) of the prion protein (PrP) gene. Here, we describe an unusual sCJD case, characterized by prolonged isolated thalamic diffusion hyperintensities and atypical brain pathology, in combination with the 129MM genotype. CASE PRESENTATION A 72-year-old Japanese man developed a mild unsteady gait that had persisted for 1 year. DWI revealed isolated thalamic diffusion hyperintensities. Over the following 4 years, his condition progressed to include ataxia and cognitive decline. Repeated cerebrospinal fluid tests were negative for 14-3-3 protein, total tau protein, and real-time quaking-induced conversion assay. Electroencephalography did not show periodic sharp wave complexes or generalized periodic discharges. Despite these findings, thalamic DWI abnormalities persisted and evolved to include cortical lesions in the later stage of the disease. Genetic testing confirmed a 129MM genotype with no pathogenic PrP gene variants. Brain autopsy identified type 2 pathogenic PrP and the absence of the M2-thalamic prion strain, suggesting an MM2-cortical (MM2C)-subtype of sCJD. Histopathology revealed small vacuoles (sv) and patchy-perivacuolar PrP deposits without large vacuoles (lv). Patchy-perivacuolar deposits are a characteristic feature of the MM2C (lv) subtype and indicate MM2C (lv) pathology. Thus, this case was classified as a rare MM2C (sv + lv) subtype. No PrP protein staining was observed in the thalamus, despite spongiform changes with small vacuoles. CONCLUSIONS This case underscores the diagnostic challenges of atypical CJD with isolated thalamic abnormalities on DWI. Despite negative cerebrospinal fluid findings and clinical diagnostic criteria, persistent DWI abnormalities and evolving clinical symptoms continued to raise suspicion of CJD. A definitive diagnosis, being the MM2C (sv + lv) subtype of sCJD, was confirmed upon pathological examination. Even when atypical findings, such as isolated thalamic abnormalities, are observed and various tests are negative, if suspicion of CJD cannot be ruled out, it is important to confirm the diagnosis and pathological subtypes via postmortem analysis.
Collapse
Affiliation(s)
- Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Mitsuo Okamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keiichiro Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
- National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
3
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
4
|
Ibrahim NM, Jagota P, Pal PK, Bhidayasiri R, Lim SY, Ugawa Y, Aldaajani Z, Jeon B, Fujioka S, Lee JY, Kukkle PL, Shang H, Phokaewvarangkul O, Diesta C, Shambetova C, Lin CH. Historical and More Common Nongenetic Movement Disorders From Asia. J Mov Disord 2023; 16:248-260. [PMID: 37291830 PMCID: PMC10548075 DOI: 10.14802/jmd.22224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Nongenetic movement disorders are common throughout the world. The movement disorders encountered may vary depending on the prevalence of certain disorders across various geographical regions. In this paper, we review historical and more common nongenetic movement disorders in Asia. The underlying causes of these movement disorders are diverse and include, among others, nutritional deficiencies, toxic and metabolic causes, and cultural Latah syndrome, contributed by geographical, economic, and cultural differences across Asia. The industrial revolution in Japan and Korea has led to diseases related to environmental toxin poisoning, such as Minamata disease and β-fluoroethyl acetate-associated cerebellar degeneration, respectively, while religious dietary restriction in the Indian subcontinent has led to infantile tremor syndrome related to vitamin B12 deficiency. In this review, we identify the salient features and key contributing factors in the development of these disorders.
Collapse
Affiliation(s)
- Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bengaluru, Karnataka, India
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Shen-Yang Lim
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University Medical College, Seoul, Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati, Metro Manila, Philippines
| | | | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Viral and Prion Infections Associated with Central Nervous System Syndromes in Brazil. Viruses 2021; 13:v13071370. [PMID: 34372576 PMCID: PMC8310075 DOI: 10.3390/v13071370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.
Collapse
|