1
|
Khalifa HO, Kayama S, Elbediwi M, Yu L, Hayashi W, Sugawara Y, Mohamed MYI, Ramadan H, Habib I, Matsumoto T, Sugai M. Genetic basis of carbapenem-resistant clinical Serratia marcescens in Japan. J Glob Antimicrob Resist 2025; 42:28-36. [PMID: 39900178 DOI: 10.1016/j.jgar.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
OBJECTIVE To investigate the genetic basis of carbapenem resistance in clinical Serratia marcescens isolates collected from patients in Japan between 1994 and 2016. A total of 5135 clinical isolates of S. marcescens were recovered from different medical centres across Japan, identified in central laboratories, and tested for antimicrobial agents using the broth microdilution method. METHODS All the isolates that showed intermediate or resistant phenotypes for at least one carbapenem antibiotic were confirmed by antimicrobial susceptibility testing and for carbapenemase production by the modified carbapenem inactivation method. Furthermore, full genetic characterization was performed by whole genome sequencing for all the isolates. RESULTS Based on our findings, 27 isolates (0.53%) exhibited resistance to ertapenem and/or meropenem. Among these, 10 isolates were phenotypically confirmed as carbapenemase producers using the modified carbapenem inactivation method test. The isolates were resistant to a wide range of antibiotics including β-lactams (48.1%-100%), two fluoroquinolones (77.8%-88.9%), tigecycline and minocycline (70.4% each), and sulfamethoxazole-trimethoprim (55.6%). Whole-genome sequencing was conducted on all carbapenem-resistant strains, uncovering blaIMP in eight isolates, comprising seven with blaIMP-1 and one with blaIMP-11, alongside multiple antimicrobial resistance determinants. Importantly, the phylogenomic comparison with international S. marcescens isolates revealed genetic relatedness and potential cross-border transmission events. CONCLUSIONS Our findings underscore the importance of enhanced surveillance and infection control measures to mitigate the dissemination of multidrug-resistant pathogens, emphasizing the need for international collaboration and coordinated efforts to address antimicrobial resistance on a global scale.
Collapse
Affiliation(s)
- Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany; Animal Health Research Institute, Agriculture Research Centre, Cairo, Egypt
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirate
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirate
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Zhang F, Li Z, Liu X, Li Z, Lei Z, Zhao J, Zhang Y, Wu Y, Yang X, Lu B. In-host intra- and inter-species transfer of bla KPC-2 and bla NDM-1 in Serratia marcescens and its local and global epidemiology. Int J Antimicrob Agents 2024; 64:107327. [PMID: 39245329 DOI: 10.1016/j.ijantimicag.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES The aim of this study was to investigate interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of resistance gene blaKPC-2 in Serratia marcescens, and explore the epidemical and evolutionary characteristics of carbapenemase-producing S. marcescens (CPSM) regionally and globally. METHODS Interspecies and intraspecies transfer of blaKPC-2- or blaNDM-1 were identified by antimicrobial susceptibility testing, plasmid conjugation and curing, discovery of transposable units (TUs), outer membrane vesicles (OMVs), qPCR, whole-genome sequencing (WGS) and bioinformatic analysis. The genomic evolution of CPSM strains was explored by cgSNP and maximum-likelihood phylogenetic tree. RESULTS CPSM S50079 strain, co-carrying blaKPC-2 and blaNDM-1 on one plasmid, was isolated from the blood of a patient with acute pancreatitis and could generate TUs carrying either blaKPC-2 or blaNDM-1. The interspecies transfer of blaNDM-1-carrying plasmid from Providencia rettgeri P50213, producing the identical blaNDM-1-carrying TUs, to S. marcescens S50079K, an S50079 variant via plasmid curing, was identified through blaNDM-1-harbouring plasmid conjugation and OMVs transfer. Moreover, the intraspecies transfer of blaKPC-2, mediated by IS26 from plasmid to chromosome in S50079, was also identified. In another patient, who underwent lung transplantation, interspecies transfer of blaNDM-1 carried by IncX3 plasmid was identified among S. marcescens and Citrobacter freundii as well as Enterobacter hormaechei via plasmid transfer. Furthermore, 11 CPSM from 349 non-repetitive S. marcescens strains were identified in the same hospital, and clonal dissemination, with carbapenemase evolution from blaKPC-2 to both blaKPC-2 and blaNDM-1, was found in the 8 CPSM across 4 years. Finally, the analysis of 236 global CPSM from 835 non-repetitive S. marcescens genomes, retrieved from the NCBI database, revealed long-term spread and evolution worldwide, and would cause the convergence of more carbapenemase genes. CONCLUSIONS Interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of resistance gene blaKPC-2 in CPSM were identified. Nosocomial and global dissemination of CPSM were revealed and more urgent surveillance was acquired.
Collapse
Affiliation(s)
- Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihua Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ziyao Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China..
| |
Collapse
|
4
|
Kim UJ, Choi SM, Kim MJ, Kim S, Shin SU, Oh SR, Park JW, Shin HY, Kim YJ, Lee UH, Choi OJ, Park HY, Shin JH, Kim SE, Kang SJ, Jung SI, Park KH. Hospital water environment and antibiotic use: key factors in a nosocomial outbreak of carbapenemase-producing Serratia marcescens. J Hosp Infect 2024; 151:69-78. [PMID: 38740300 DOI: 10.1016/j.jhin.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The healthcare water environment is a potential reservoir of carbapenem-resistant organisms (CROs). AIM To report the role of the water environment as a reservoir and the infection control measures applied to suppress a prolonged outbreak of Klebsiella pneumoniae carbapenemase-producing Serratia marcescens (KPC-SM) in two intensive care units (ICUs). METHODS The outbreak occurred in the ICUs of a tertiary hospital from October 2020 to July 2021. Comprehensive patient contact tracing and environmental assessments were conducted, and a case-control study was performed to identify factors associated with the acquisition of KPC-SM. Associations among isolates were assessed via pulsed-field gel electrophoresis (PFGE). Antibiotic usage was analysed. FINDINGS The outbreak consisted of two waves involving a total of 30 patients with KPC-SM. Multiple environmental cultures identified KPC-SM in a sink, a dirty utility room, and a communal bathroom shared by the ICUs, together with the waste bucket of a continuous renal replacement therapy (CRRT) system. The genetic similarity of the KPC-SM isolates from patients and the environment was confirmed by PFGE. A retrospective review of 30 cases identified that the use of CRRT and antibiotics was associated with acquisition of KPC-SM (P < 0.05). There was a continuous increase in the use of carbapenems; notably, the use of colistin has increased since 2019. CONCLUSION Our study demonstrates that CRRT systems, along with other hospital water environments, are significant potential sources of resistant micro-organisms, underscoring the necessity of enhancing infection control practices in these areas.
Collapse
Affiliation(s)
- U J Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - S-M Choi
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - M J Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - S Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - S U Shin
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - S-R Oh
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - J-W Park
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - H Y Shin
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Y J Kim
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - U H Lee
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - O-J Choi
- Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - H-Y Park
- Department of Pharmacy, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - J-H Shin
- Department of Laboratory Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - S E Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - S-J Kang
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - S I Jung
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - K-H Park
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infection Control Unit, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Overmeyer AJ, Prentice E, Brink A, Lennard K, Moodley C. The genomic characterization of carbapenem-resistant Serratia marcescens at a tertiary hospital in South Africa. JAC Antimicrob Resist 2023; 5:dlad089. [PMID: 37497336 PMCID: PMC10368080 DOI: 10.1093/jacamr/dlad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Serratia marcescens is an opportunistic nosocomial pathogen, and recent reports have highlighted the rapid increase in multidrug resistance in this organism. There is a paucity in genomic data for carbapenem-resistant S. marcescens (CRSM). Methods A retrospective cohort study describing laboratory-confirmed CRSM from a tertiary academic hospital in Cape Town, South Africa, for the period 2015-20, was performed. Stored CRSM and contemporary isolates were submitted for WGS using Illumina MiSeq, with the Nextera DNA Flex Library Preparation Kit. Sequence data were analysed in-house using srst2 and Tychus, and CRSM and contemporary isolates were compared. Results Twenty-one CRSM and four contemporary isolates were sequenced and analysed. Twenty-four different resistance genes were identified, with all isolates having at least two resistance genes, and seventeen isolates harbouring three or more genes. This correlated well with phenotypic results. The blaOXA-48-like carbapenemase was the most common carbapenemase identified, in 86% (18/21) of CRSM. A core SNP difference tree indicated that the CRSM could be grouped into three clusters. Eleven isolates had shared plasmids. Several genes and SNPs were identified in the CRSM, which may putatively augment virulence, but this requires further functional characterization. Conclusions A diverse resistome was observed in CRSM, which was also reflected phenotypically, with blaOXA-48-like the most commonly carbapenemase. Though distinct clusters were observed, no clonality was noted, and a limited number of isolates shared plasmids. This study provides genomic data for emerging CRSM and highlights the importance of ongoing genomic surveillance to inform infection prevention control and antimicrobial stewardship initiatives.
Collapse
Affiliation(s)
| | - Elizabeth Prentice
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Adrian Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Katie Lennard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
6
|
Jia J, Huang L, Zhang L, Sheng Y, Chu W, Xu H, Xu A. Genomic characterization of two carbapenem-resistant Serratia marcescens isolates causing bacteremia: Emergence of KPC-2-encoding IncR plasmids. Front Cell Infect Microbiol 2023; 13:1075255. [PMID: 36844412 PMCID: PMC9945258 DOI: 10.3389/fcimb.2023.1075255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
The occurrence and transmission of carbapenemase-producing-Enterobacterales (CPE) on a global scale has become a major issue. Clinical reports are rarely providing information on the genomic and plasmid features of carbapenem-resistant Serratia marcescens. Our objective was to investigate the resistance and transmission dynamics of two carbapenem-resistant S. marcescens that are resistant to carbapenem and have caused bacteremia in China. Blood specimens were taken from two individuals with bacteremia. Multiplex PCR was employed to identify genes that code for carbapenemase. Antimicrobial susceptibility tests and plasmid analysis were conducted on S. marcescens isolates SM768 and SM4145. The genome of SM768 and SM4145 were completely sequenced using NovaSeq 6000-PE150 and PacBio RS II platforms. Antimicrobial resistance genes (ARGs) were predicted using the ResFinder tool. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and southern blotting were employed to analyze plasmids. Two S. marcescens that produced KPC-2 were identified from bloodstream infections. The antimicrobial susceptibility testing demonstrated that both of the isolates had a resistance to various antibiotics. The whole-genome sequence (WGS) and plasmid analysis revealed the presence of bla KPC-2-bearing IncR plasmids and multiple plasmid-borne antimicrobial resistance genes in the isolates. Our comparative plasmid analysis suggested that the two IncR plasmids identified in this study could be derived from a common ancestor. Our findings revealed the emergence of bla KPC-2-bearing IncR plasmid in China, which could be a hindrance to the transmission of KPC-2-producing S. marcescens in clinical settings.
Collapse
Affiliation(s)
- Junli Jia
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lisha Huang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbing Sheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weili Chu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Aiguo Xu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Aiguo Xu,
| |
Collapse
|
7
|
Bolourchi N, Noori Goodarzi N, Giske CG, Nematzadeh S, Haririzadeh Jouriani F, Solgi H, Badmasti F. Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene 2022; 822:146355. [PMID: 35189248 DOI: 10.1016/j.gene.2022.146355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) have been thoroughly studied as the pathogens associated with hospital acquired infections. However, data on Serratia marcescens are not enough. S. marcescens is now becoming a propensity for its highly antimicrobial-resistant clinical infections. METHODS Four carbapenem-resistant S. marcescens (CR-SM) isolates were obtained from hospitalized patients through routine microbiological experiments. We assembled the isolates genomes using whole genome sequencing (WGS) and compared their resistome and virulome patterns. RESULTS The average length and CG content of chromosomes was 5.33 Mbp and 59.8%, respectively. The number of coding sequences (CDSs) ranged from 4,959 to 4,989. All strains had one single putative conjugative plasmid with IncL incompatibility (Inc) group. The strains harbored blaCTX-M-15, blaTEM-1 and blaSHV-134. All plamsids were positive for blaOXA-48. No blaNDM-1, blaKPC, blaVIM and blaIMP were identified. The blaSRT-2 and aac(6')-Ic genes were chromosomally-encoded. Class 1 integron was detected in strains P8, P11 and P14. The Escher_RCS47 and Salmon_SJ46 prophages played major role in plasmid-mediated carraige of extended spectrum β-lactamases (ESBLs). The CR-SM strains were equipt with typical virulence factors of oppotunistic pathogens including biofilm formation, adhesins, secretory systems and siderophores. The strains did not have ability to produce prodigiosin but were positive for chitinase and EstA. CONCLUSION The presence of conjugative plasmids harboring major β-lactamases within prophage and class 1 integron structures highlights the role of different mobile genetic elements (MGEs) in distribution of AMR factors and more specifically carbapenemases. More molecular studies are required to determine the status of carbapenem resistance in clinical starins. However, appropriate strategies to control the global dissemination of CR-SM are urgent.
Collapse
Affiliation(s)
- Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Shoeib Nematzadeh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Huang X, Shen S, Shi Q, Ding L, Wu S, Han R, Zhou X, Yu H, Hu F. First Report of bla IMP-4 and bla SRT-2 Coproducing Serratia marcescens Clinical Isolate in China. Front Microbiol 2021; 12:743312. [PMID: 34659175 PMCID: PMC8517538 DOI: 10.3389/fmicb.2021.743312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) has become a major therapeutic concern in clinical settings, and carbapenemase genes have been widely reported in various bacteria. In Serratia marcescens, class A group carbapenemases including SME and KPC were mostly identified. However, there are few reports of metallo-β-lactamase-producing S. marcescens. Here, we isolated a carbapenem-resistant S. marcescens (S378) from a patient with asymptomatic urinary tract infection which was then identified as an IMP-4-producing S. marcescens at a tertiary hospital in Sichuan Province in southwest of China. The species were identified using MALDI-TOF MS, and carbapenemase-encoding genes were detected using PCR and DNA sequencing. The results of antimicrobial susceptibility testing by broth microdilution method indicated that the isolate S. marcescens S378 was resistant to meropenem (MIC = 32 μg/ml) and imipenem (MIC = 64 μg/ml) and intermediate to aztreonam (MIC = 8 μg/ml). The complete genomic sequence of S. marcescens was identified using Illumina (Illumina, San Diego, CA, United States) short-read sequencing (150 bp paired-end reads); five resistance genes had been identified, including blaIMP–4, blaSRT–2, aac(6′)-Ic, qnrS1, and tet(41). Conjugation experiments indicated that the blaIMP–4-carrying plasmid pS378P was conjugative. Complete sequence analysis of the plasmid pS378P bearing blaIMP–4 revealed that it was a 48,780-bp IncN-type plasmid with an average GC content of 50% and was nearly identical to pP378-IMP (99% nucleotide identity and query coverage).
Collapse
Affiliation(s)
- Xiangning Huang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siquan Shen
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xun Zhou
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
9
|
Lynch JP, Clark NM, Zhanel GG. Escalating antimicrobial resistance among Enterobacteriaceae: focus on carbapenemases. Expert Opin Pharmacother 2021; 22:1455-1473. [PMID: 33823714 DOI: 10.1080/14656566.2021.1904891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Over the past few decades, antimicrobial resistance (AMR) has skyrocketed globally among bacteria within the Family Enterobacteriaceae (i.e. Enterobacter spp, Klebsiella spp, Escherichia coli, Proteus spp, Serratia marcescens, Citrobacter spp, and others). Enterobacteriaceae are intestinal flora and are important pathogens in nosocomial and community settings. Enterobacteriaceae spread easily between humans and may acquire AMR via plasmids or other mobile resistance elements. The emergence and spread of multidrug resistant (MDR) clones have greatly limited therapeutic options. Some infections are untreatable with existing antimicrobials.Areas covered: The authors discuss the escalation of CRE globally, the epidemiology and outcomes of CRE infections, the optimal therapy, and the potential role of several new antimicrobials to combat MDR organisms. An exhaustive search for literature related to Enterobacteriaceae was performed using PubMed, using the following key words: antimicrobial resistance; carbapenemases; Enterobacterales; Enterobacteriaceae; Klebsiella pneumoniae; Escherichia coli; global epidemiology; metallo-β-lactamases; multidrug resistance; New Delhi Metalloproteinase-1 (NDM-1); plasmidsExpert opinion: Innovation and development of new classes of antibacterial agents are critical to expand effective therapeutic options. The authors encourage the judicious use of antibiotics and aggressive infection-control measures are essential to minimize the spread of AMR.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology;The David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nina M Clark
- The Division of Infectious Diseases, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|