1
|
Ribeiro NG, da Silva P, de Lima Paz PJ, Arabe MF, Listoni FP, Listoni EP, Panegossi LC, Ribeiro MG. In vitro susceptibility pattern of Rhodococcus equi isolated from patients to antimicrobials recommended exclusively to humans, to domestic animals and to both. Rev Inst Med Trop Sao Paulo 2025; 67:e3. [PMID: 39907395 PMCID: PMC11790073 DOI: 10.1590/s1678-9946202567003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Rhodococcus equi is an opportunistic soil-borne bacterium that is eliminated in feces of multi-host animals. An increase in multidrug-resistant R. equi isolates has been reported in humans and domestic animals, and it has been hypothesized that the treatment of R. equi in foals could increase the selective pressure on multidrug-resistant isolates and favor human infections by resistant isolates. We investigated the in vitro antimicrobial susceptibility/resistance of 41 R. equi strains from humans, which were isolated from patients with pulmonary signs, using 19 antimicrobials from 10 distinct classes, recommended exclusively to humans, recommended exclusively to domestic animals and used in both. All isolates were subjected to mass spectrometry and identified as R. equi. Among the antimicrobials used exclusively in humans, tigecycline and vancomycin showed 100% efficacy. Amikacin, amoxicillin/clavulanic acid, imipenem, levofloxacin, clarithromycin, rifampin, ciprofloxacin, and gentamicin, used in both humans and animals, revealed high efficacy (97-100%). Conversely, a higher frequency of isolates was resistant to penicillin (87.8%) and trimethoprim/sulfamethoxazole (43.9%), which are used in both humans and animals. Among the antimicrobials used only in animals, isolates were resistant to florfenicol (46.4%), ceftiofur (17.1%), and enrofloxacin (2.5%). Multidrug resistance was observed in 34% of isolates. The identification of drug-resistant R. equi isolated from humans used exclusively in animals is circumstantial evidence of the pathogen transmission from domestic animals to humans. This study contributes to the molecular identification of Rhodococcus species from humans and to the epidemiological vigilance of the multidrug-resistant isolates.
Collapse
Affiliation(s)
- Nícolas Garcia Ribeiro
- Fundação Educacional do Município de Assis, Faculdade de Medicina, Assis, São Paulo, Brazil
| | - Paulo da Silva
- Instituto Adolfo Lutz, Ribeirão Preto, São Paulo, Brazil
| | - Patrick Júnior de Lima Paz
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Marcelo Fagali Arabe
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Fernando Paganini Listoni
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Evandro Paganini Listoni
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Letícia Colin Panegossi
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Márcio Garcia Ribeiro
- Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
The Havemeyer Workshop on Rhodococcus equi Scientific Advisory Committee. Science-in-brief: The 6th Havemeyer Workshop on Rhodococcus equi-A decade-long journey in advancing research into a major equine pathogen (2012-2023). Equine Vet J 2024; 56:838-841. [PMID: 39113177 DOI: 10.1111/evj.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024]
|
3
|
Vázquez-Boland J, Val-Calvo J, Scortti M. Update on emerging multidrug-resistant Rhodococcus equi. Vet Rec 2024; 194:e4071. [PMID: 38488609 DOI: 10.1002/vetr.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Jose Vázquez-Boland, Jorge Val-Calvo and Mariela Scortti present a brief summary of the main aspects surrounding the recently identified multidrug-resistant Rhodococcus equi that emerged in the USA and the actions being taken to tackle the problem with support from the UK's Horserace Betting Levy Board.
Collapse
Affiliation(s)
- Jose Vázquez-Boland
- Microbial Pathogenesis Laboratory, Biomedical Sciences-Infection Medicine, College of Medicine and Veterinary Medicine, IRR Building South, University of Edinburgh, Edinburgh, EH16 4UU
| | - Jorge Val-Calvo
- Microbial Pathogenesis Laboratory, Biomedical Sciences-Infection Medicine, College of Medicine and Veterinary Medicine, IRR Building South, University of Edinburgh, Edinburgh, EH16 4UU
| | - Mariela Scortti
- Microbial Pathogenesis Laboratory, Biomedical Sciences-Infection Medicine, College of Medicine and Veterinary Medicine, IRR Building South, University of Edinburgh, Edinburgh, EH16 4UU
| |
Collapse
|
4
|
Higgins C, Cohen ND, Slovis N, Boersma M, Gaonkar PP, Golden DR, Huber L. Antimicrobial Residue Accumulation Contributes to Higher Levels of Rhodococcus equi Carrying Resistance Genes in the Environment of Horse-Breeding Farms. Vet Sci 2024; 11:92. [PMID: 38393110 PMCID: PMC10892917 DOI: 10.3390/vetsci11020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial residues excreted in the environment following antimicrobial treatment enhance resistant microbial communities in the environment and have long-term effects on the selection and maintenance of antimicrobial resistance genes (AMRGs). In this study, we focused on understanding the impact of antimicrobial use on antimicrobial residue pollution and antimicrobial resistance (AMR) in the environment of horse-breeding farms. Rhodococcus equi is an ideal microbe to study these associations because it lives naturally in the soil, exchanges AMRGs with other bacteria in the environment, and can cause disease in animals and humans. The environment is the main source of R. equi infections in foals; therefore, higher levels of multidrug-resistant (MDR) R. equi in the environment contribute to clinical infections with MDR R. equi. We found that macrolide residues in the environment of horse-breeding farms and the use of thoracic ultrasonographic screening (TUS) for early detection of subclinically affected foals with R. equi infections were strongly associated with the presence of R. equi carrying AMRGs in the soil. Our findings indicate that the use of TUS contributed to historically higher antimicrobial use in foals, leading to the accumulation of antimicrobial residues in the environment and enhancing MDR R. equi.
Collapse
Affiliation(s)
- Courtney Higgins
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Noah D. Cohen
- Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M, College Station, TX 77843, USA;
| | - Nathan Slovis
- Hagyard Equine Medical Institute, Lexington, KY 40511, USA
| | - Melissa Boersma
- College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA;
| | - Pankaj P. Gaonkar
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Daniel R. Golden
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Laura Huber
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| |
Collapse
|
5
|
Takai S, Mizuno Y, Suzuki Y, Sasaki Y, Kakuda T, Kirikae T. [Rhodococcus equi infections in humans: an emerging zoonotic pathogen]. Nihon Saikingaku Zasshi 2024; 79:15-24. [PMID: 38382971 DOI: 10.3412/jsb.79.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Rhodococcus equi is a facultative intracellular gram-positive coccobacillus which is a well-known cause of foal pneumonia and/or enteritis in equine veterinary medicine. More than 300 cases of R. equi infection have been reported since the first description of human disease in 1968. Most patients who become infected with R equi are immunocompromised, such as those infected with human immunodeficiency virus (HIV), recipients of organ transplantation, and patients receiving cancer treatment. However, there are increasing reports of the immunocompetent hosts. The pathogenicity of R. equi has been attributed to the presence of plasmid-encoded virulence-associated proteins (Vap). To date, three host-associated virulence plasmid types of R. equi have been identified as follows: the circular pVAPA and pVAPB, related, respectively, to equine and porcine isolates in 1991 and 1995, and a recently described linear pVAPN plasmid associated with bovine and caprine strains in 2015. More recently, these three plasmid types have been re-found in the human isolates which were isolated during 1980s to 1990s. Not only horses, but also pigs, goats, cattle and their environment should be considered as a potential source of R. equi for humans. In this review, we shed light on the current understanding of R. equi as an emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Shinji Takai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | | | - Yasunori Suzuki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Yukako Sasaki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Tsutomu Kakuda
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Teruo Kirikae
- Department of Microbiome Research, Department of Microbiology, Juntendo University School of Medicine
| |
Collapse
|
6
|
Takai S, Suzuki Y, Sasaki Y, Kakuda T, Ribeiro MG, Makrai L, Witkowski L, Cohen N, Sekizaki T. Short review: Geographical distribution of equine-associated pVAPA plasmids in Rhodococcus equi in the world. Vet Microbiol 2023; 287:109919. [PMID: 38000208 DOI: 10.1016/j.vetmic.2023.109919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Virulent Rhodococcus equi strains expressing virulence-associated 15-17 kDa protein (VapA) and having a large virulence plasmid (pVAPA) of 85-90 kb containing vapA gene are pathogenic for horses. In the last two decades, following pVAPA, two host-associated virulence plasmid types of R. equi have been discovered: a circular plasmid, pVAPB, associated with porcine isolates in 1995, and a recently detected linear plasmid, pVAPN, related to bovine and caprine isolates. Molecular epidemiological studies of R. equi infection in foals on horse-breeding farms in Japan and many countries around the world have been conducted in the last three decades, and the epidemiological studies using restriction enzyme digestion patterns of plasmid DNAs from virulent isolates have shown 14 distinct pVAPA subtypes and their geographical preference. This short review summarizes previous reports regarding equine-associated pVAPA subtypes in the world and discusses their geographic distribution from the standpoint of horse movements.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Yasunori Suzuki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yukako Sasaki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Márcio Garcia Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - László Makrai
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Alvarez Narvaez S, Sanchez S. Exploring the Accessory Genome of Multidrug-Resistant Rhodococcus equi Clone 2287. Antibiotics (Basel) 2023; 12:1631. [PMID: 37998833 PMCID: PMC10669575 DOI: 10.3390/antibiotics12111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Decades of antimicrobial overuse to treat respiratory disease in foals have promoted the emergence and spread of zoonotic multidrug-resistant (MDR) Rhodococcus equi worldwide. Three main R. equi MDR clonal populations-2287, G2106, and G2017-have been identified so far. However, only clones 2287 and G2016 have been isolated from sick animals, with clone 2287 being the main MDR R. equi recovered. The genetic mechanisms that make this MDR clone superior to the others at infecting foals are still unknown. Here, we performed a deep genetic characterization of the accessory genomes of 207 R. equi isolates, and we describe IME2287, a novel genetic element in the accessory genome of clone 2287, potentially involved in the maintenance and spread of this MDR population over time. IME2287 is a putative self-replicative integrative mobilizable element (IME) carrying a DNA replication and partitioning operon and genes encoding its excision and integration from the R. equi genome via a serine recombinase. Additionally, IME2287 encodes a protein containing a Toll/interleukin-1 receptor (TIR) domain that may inhibit TLR-mediated NF-kB signaling in the host and a toxin-antitoxin (TA) system, whose orthologs have been associated with antibiotic resistance/tolerance, virulence, pathogenicity islands, bacterial persistence, and pathogen trafficking. This new set of genes may explain the success of clone 2287 over the other MDR R. equi clones.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Higgins C, Huber L. Rhodococcus equi: challenges to treat infections and to mitigate antimicrobial resistance. J Equine Vet Sci 2023:104845. [PMID: 37295760 DOI: 10.1016/j.jevs.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Rhodococcus equi, a gram-positive facultative intracellular pathogen and a soil saprophyte, is one of the most common causes of pneumonia in young foals. It poses a threat to the economy in endemic horse-breeding farms and to animal welfare annually. Many farms use thoracic ultrasonographic screening and antimicrobial treatment of subclinically affected foals as a preventive measure against severe R. equi infections. The wide use antimicrobials to treat subclinically affected foals has contributed to the emergence of multidrug resistant (MDR)-R. equi in both clinical isolates from sick foals and in the environment of horse-breeding farms. Alternatives to treat foals infected with MDR-R. equi are scarce and the impact of the emergence of MDR-R. equi in the environment of farms is still unknown. The aim of this review is to discuss the emergence of MDR-R. equi in the United States and the challenges faced to guide antimicrobial use practices. Reduction of antimicrobial use at horse-breeding farms is essential for the preservation of antimicrobial efficacy and, ultimately, human, animal, and environmental health.
Collapse
Affiliation(s)
- Courtney Higgins
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| |
Collapse
|