1
|
Lois M, Polo D, Pérez del Molino ML, Coira A, Aguilera A, Romalde JL. Monitoring the Emergence of SARS-CoV-2 VOCs in Wastewater and Clinical Samples-A One-Year Study in Santiago de Compostela (Spain). Viruses 2025; 17:489. [PMID: 40284932 PMCID: PMC12030845 DOI: 10.3390/v17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Wastewater surveillance has become a valuable tool to monitor the emergence of SARS-CoV-2 variants of concern (VOCs) at the community level. In this study, we aimed to evaluate the presence of Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1617.2), and Omicron (B.1.1.529) VOCs in samples from the inlet of a wastewater treatment plant (WWTP) as well as from two different sewer interceptors (SI-1 and SI-2) from the urban sewage system in Santiago de Compostela (Galicia, NW of Spain) throughout 2021 and January 2022. For this purpose, detection and quantification of the four VOCs was performed using four duplex SARS-CoV-2 allelic discrimination RT-qPCR assays, targeting the S-gene. An N1 RT-qPCR gene assay was used as a reference for the presence of SARS-CoV-2 RNA in wastewater samples. All VOCs were detected in wastewater samples. Alpha, Beta, Delta, and Omicron VOCs were detected in 45.7%, 7.5%, 66.7%, and 72.7% of all samples, respectively. Alpha VOC was dominant during the first part of the study, whereas Delta and Omicron detection peaks were observed in May-June and December 2021, respectively. Some differences were observed among the results obtained for the two city sectors studied, which could be explained by the differences in the characteristics of the population between them. Wastewater-based epidemiology allowed us to track the early circulation and emergence of SARS-CoV-2 variants at a local level, and our results are temporally concordant with clinical data and epidemiological findings reported by the health authorities.
Collapse
Affiliation(s)
- Marta Lois
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - David Polo
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - María Luisa Pérez del Molino
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Amparo Coira
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Antonio Aguilera
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Jesús L. Romalde
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| |
Collapse
|
2
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
3
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Hasing ME, Lee BE, Gao T, Li Q, Qiu Y, Ellehoj E, Graber TE, Fuzzen M, Servos M, Landgraff C, Delatolla R, Tipples G, Zelyas N, Hinshaw D, Maal-Bared R, Sikora C, Parkins M, Hubert CRJ, Frankowski K, Hrudey SE, Pang XL. Wastewater surveillance monitoring of SARS-CoV-2 variants of concern and dynamics of transmission and community burden of COVID-19. Emerg Microbes Infect 2023; 12:2233638. [PMID: 37409382 PMCID: PMC10408568 DOI: 10.1080/22221751.2023.2233638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Wastewater-based surveillance is a valuable approach for monitoring COVID-19 at community level. Monitoring SARS-CoV-2 variants of concern (VOC) in wastewater has become increasingly relevant when clinical testing capacity and case-based surveillance are limited. In this study, we ascertained the turnover of six VOC in Alberta wastewater from May 2020 to May 2022. Wastewater samples from nine wastewater treatment plants across Alberta were analysed using VOC-specific RT-qPCR assays. The performance of the RT-qPCR assays in identifying VOC in wastewater was evaluated against next generation sequencing. The relative abundance of each VOC in wastewater was compared to positivity rate in COVID-19 testing. VOC-specific RT-qPCR assays performed comparatively well against next generation sequencing; concordance rates ranged from 89% to 98% for detection of Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.2, with a slightly lower rate of 85% for Delta (p < 0.01). Elevated relative abundance of Alpha, Delta, Omicron BA.1 and BA.2 were each associated with increased COVID-19 positivity rate. Alpha, Delta and Omicron BA.2 reached 90% relative abundance in wastewater within 80, 111 and 62 days after their initial detection, respectively. Omicron BA.1 increased more rapidly, reaching a 90% relative abundance in wastewater after 35 days. Our results from VOC surveillance in wastewater correspond with clinical observations that Omicron is the VOC with highest disease burden over the shortest period in Alberta to date. The findings suggest that changes in relative abundance of a VOC in wastewater can be used as a supplementary indicator to track and perhaps predict COVID-19 burden in a population.
Collapse
Affiliation(s)
- Maria E. Hasing
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E. Lee
- Department of Paediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tiejun Gao
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Ellehoj
- Ellehoj Redmond Consulting, Edmonton, Alberta, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Tipples
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Deena Hinshaw
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christopher Sikora
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli L. Pang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Asadi M, Hamilton D, Shomachuk C, Oloye FF, De Lange C, Pu X, Osunla CA, Cantin J, El-Baroudy S, Mejia EM, Gregorchuk B, Becker MG, Mangat C, Brinkmann M, Jones PD, Giesy JP, McPhedran KN. Assessment of rapid wastewater surveillance for determination of communicable disease spread in municipalities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166541. [PMID: 37625717 DOI: 10.1016/j.scitotenv.2023.166541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Wastewater surveillance (WS) helps to improve the understanding of the spread of communicable diseases in communities. WS can assist public health decision-makers in the design and implementation of timely mitigation measures. There is an increased need to use reliable, cost-effective, simple, and rapid WS systems, given traditional analytical (or 'gold-standard') programs are instrument/time-intensive, and dependent on highly skilled personnel. This study investigated the application of the portable GeneXpert platform for WS of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), influenza B virus (IBV), and respiratory syncytial virus (RSV). The GeneXpert system with the Xpert Xpress-SARS-CoV-2/Flu/RSV test kit uses reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to analyze wastewater samples. From September 2022 through January 2023, wastewater samples were collected from the influents of municipal wastewater treatment plants (MWTPs) of Saskatoon, Prince Albert, and North Battleford in the province of Saskatchewan, Canada. Both raw and concentrated wastewater samples were subjected to the GeneXpert analysis. Results showed that the Saskatoon wastewater viral loads were significantly correlated to Saskatchewan's influenza and COVID-19 clinical cases, with a lead time of 10 days for IAV and a lag time of 4 days for SARS-CoV-2. Additionally, the GeneXpert analysis of the three cities' wastewater samples showed that the raw WS could capture the dynamics of SARS-CoV-2 and IAV due to their correlation with concentrated WS. Interestingly, IBV loads were not detected in any wastewater samples, while the Saskatoon and Prince Albert wastewater samples collected following the 2023 holiday season (end of December and beginning of January) were positive for RSV. This study indicates that the GeneXpert has excellent potential for use in the development of an early warning system for transmissible disease in municipalities and limited-resource communities while simultaneously providing stakeholders with an efficient WS methodology.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hamilton
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Corwyn Shomachuk
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chantel De Lange
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xia Pu
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charles A Osunla
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Seba El-Baroudy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edgard M Mejia
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Branden Gregorchuk
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael G Becker
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chand Mangat
- Wastewater Surveillance Unit, On-Health Division, National Microbiology Laboratory - Winnipeg, Public Health Agency of Canada, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
7
|
Lee J, Acosta N, Waddell BJ, Du K, Xiang K, Van Doorn J, Low K, Bautista MA, McCalder J, Dai X, Lu X, Chekouo T, Pradhan P, Sedaghat N, Papparis C, Buchner Beaudet A, Chen J, Chan L, Vivas L, Westlund P, Bhatnagar S, Stefani S, Visser G, Cabaj J, Bertazzon S, Sarabi S, Achari G, Clark RG, Hrudey SE, Lee BE, Pang X, Webster B, Ghali WA, Buret AG, Williamson T, Southern DA, Meddings J, Frankowski K, Hubert CRJ, Parkins MD. Campus node-based wastewater surveillance enables COVID-19 case localization and confirms lower SARS-CoV-2 burden relative to the surrounding community. WATER RESEARCH 2023; 244:120469. [PMID: 37634459 DOI: 10.1016/j.watres.2023.120469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this approach has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021 and April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Relative to clinical cases identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.
Collapse
Affiliation(s)
- Jangwoo Lee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Kevin Xiang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Jennifer Van Doorn
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Kashtin Low
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Maria A Bautista
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
| | - Xuewen Lu
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Alexander Buchner Beaudet
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Jianwei Chen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Leslie Chan
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Laura Vivas
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, Canada; Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada
| | - September Stefani
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Gail Visser
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada
| | - Jason Cabaj
- Department of Community Health Sciences, University of Calgary, Calgary, Canada; Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada; Provincial Population & Public Health, Alberta Health Services, Calgary, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | | | - Shahrzad Sarabi
- Department of Geography, University of Calgary, Calgary, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, Calgary, Canada
| | - Rhonda G Clark
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Steve E Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women & Children's Health Research Institute, Li Ka Shing Institute of Virology, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Precision Laboratories, Public Health Laboratory, Alberta Health Services, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Brendan Webster
- Occupational Health Staff Wellness, University of Calgary, Calgary, Canada
| | - William Amin Ghali
- Department of Community Health Sciences, University of Calgary, Calgary, Canada; Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, Canada; Centre for Health Informatics, University of Calgary, Calgary, Canada
| | - Andre Gerald Buret
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, Calgary, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, Canada; Centre for Health Informatics, University of Calgary, Calgary, Canada
| | - Danielle A Southern
- Department of Community Health Sciences, University of Calgary, Calgary, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, Canada; Centre for Health Informatics, University of Calgary, Calgary, Canada
| | - Jon Meddings
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 2V5, Canada; Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, Canada.
| |
Collapse
|
8
|
Kumblathan T, Liu Y, Pang X, Hrudey SE, Le XC, Li XF. Quantification and Differentiation of SARS-CoV-2 Variants in Wastewater for Surveillance. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:203-213. [PMID: 37736345 PMCID: PMC10510104 DOI: 10.1021/envhealth.3c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023]
Abstract
Wastewater surveillance plays an important role in the monitoring of infections of SARS-CoV-2 at the community level. We report here the determination of SARS-CoV-2 and differentiation of its variants of concern in 294 wastewater samples collected from two major Canadian cities from May 2021 to March 2023. The overall method of analysis involved extraction of the virus and viral components using electronegative membranes, in situ stabilization and concentration of the viral RNA onto magnetic beads, and direct analysis of the viral RNA on the magnetic beads. Multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays, targeting specific and naturally selected mutations in SARS-CoV-2, enabled detection and differentiation of the Alpha, Beta, Gamma, Delta, and Omicron variants. An Omicron triplex RT-qPCR assay targeting three mutations, HV 69-70 deletion, K417N, and L452R, was able to detect and differentiate the Omicron BA.1/BA.3, BA.2/XBB, and BA.4/5. This assay had efficiencies of 90-104% for all three mutation targets and a limit of detection of 28 RNA copies per reaction. Analyses of 294 wastewater samples collected over a two-year span showed the concentrations and trends of Alpha, Beta, Gamma, Delta, and Omicron variants as they emerge in two major Canadian cities participating in the wastewater surveillance program. The trends of specific variants were consistent with clinical reports for the same period. At the beginning of each wave, the corresponding variants were detectable in wastewater. For example, RNA concentrations of the BA.2 variant were as high as 104 copies per 100 mL of wastewater collected in January 2022, when approximately only 50-60 clinical cases of BA.2 infection were reported in Canada. These results show that the strategy and highly sensitive assays for the variants of concern in wastewater are potentially useful for the detection of newly emerging SARS-CoV-2 variants and other viruses for future community biomonitoring.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Yanming Liu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xiaoli Pang
- Division
of Diagnostic and Applied Microbiology, Department of Laboratory Medicine
and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2B7
- Public
Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada T6G 2J2
| | - Steve E. Hrudey
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
- Division
of Diagnostic and Applied Microbiology, Department of Laboratory Medicine
and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2B7
- Public
Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada T6G 2J2
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
9
|
Lin YCJ, Evans DH, Robbins NF, Orjuela G, Abe KT, Rathod B, Colwill K, Gingras AC, Tuite A, Yi QL, O’Brien SF, Drews SJ. Diminished Neutralization Capacity of SARS-CoV-2 Omicron BA.1 in Donor Plasma Collected from January to March 2021. Microbiol Spectr 2023; 11:e0525622. [PMID: 37289096 PMCID: PMC10434250 DOI: 10.1128/spectrum.05256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
The 50% plaque reduction neutralization assay (PRNT50) has been previously used to assess the neutralization capacity of donor plasma against wild-type and variant of concern (VOC) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging data suggest that plasma with an anti-SARS-CoV-2 level of ≥2 × 104 binding antibody units/mL (BAU/mL) protects against SARS-CoV-2 Omicron BA.1 infection. Specimens were collected using a cross-sectional random sampling approach. For PRNT50 studies, 63 previously analyzed specimens by PRNT50 versus SARS-CoV-2 wild-type, Alpha, Beta, Gamma, and Delta were analyzed by PRNT50 versus Omicron BA.1. The 63 specimens plus 4,390 specimens (randomly sampled regardless of serological evidence of infection) were also tested using the Abbott SARS-CoV-2 IgG II Quant assay (anti-spike [S]; Abbott, Chicago, IL, USA; Abbott Quant assay). In the vaccinated group, the percentages of specimens with any measurable PRNT50 versus wild-type or VOC were wild type (21/25 [84%]), Alpha (19/25 [76%]), Beta (18/25 [72%]), Gamma (13/25 [52%]), Delta (19/25 [76%]), and Omicron BA.1 (9/25 [36%]). In the unvaccinated group, the percentages of specimens with any measurable PRNT50 versus wild type or VOC were wild-type SARS-CoV-2 (16/39 [41%]), Alpha (16/39 [41%]), Beta (10/39 [26%]), Gamma (9/39 [23%]), Delta (16/39 [41%]), and Omicron BA.1 (0/39) (Fisher's exact tests, vaccinated versus unvaccinated for each variant, P < 0.05). None of the 4,453 specimens tested by the Abbott Quant assay had a binding capacity of ≥2 × 104 BAU/mL. Vaccinated donors were more likely than unvaccinated donors to neutralize Omicron when assessed by a PRNT50 assay. IMPORTANCE SARS-CoV-2 Omicron emergence occurred in Canada during the period from November 2021 to January 2022. This study assessed the ability of donor plasma collected earlier (January to March 2021) to generate any neutralizing capacity against Omicron BA.1 SARS-CoV-2. Vaccinated individuals, regardless of infection status, were more likely to neutralize Omicron BA.1 than unvaccinated individuals. This study then used a semiquantitative binding antibody assay to screen a larger number of specimens (4,453) for individual specimens that might have high-titer neutralizing capacity against Omicron BA.1. None of the 4,453 specimens tested by the semiquantitative SARS-CoV-2 assay had a binding capacity suggestive of a high-titer neutralizing capacity against Omicron BA.1. These data do not imply that Canadians lacked immunity to Omicron BA.1 during the study period. Immunity to SARS-CoV-2 is complex, and there is still no wide consensus on correlation of protection to SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Chan J. Lin
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - David H. Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | | | | | - Kento T. Abe
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh Tuite
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Qi-Long Yi
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Sheila F. O’Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven J. Drews
- Canadian Blood Services, Microbiology, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Rioux MD, Guillemette F, Lemarchand K, Doiron K, Lemay JF, Maere T, Dolcé P, Quessy P, Abonnenc N, Vanrolleghem PA, Frigon D. Wastewater-based epidemiology: the crucial role of viral shedding dynamics in small communities. Front Public Health 2023; 11:1141837. [PMID: 37601171 PMCID: PMC10433918 DOI: 10.3389/fpubh.2023.1141837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Background Wastewater surveillance (WWS) of pathogens is a rapidly evolving field owing to the 2019 coronavirus disease pandemic, which brought about a paradigm shift in public health authorities for the management of pathogen outbreaks. However, the interpretation of WWS in terms of clinical cases remains a challenge, particularly in small communities where large variations in pathogen concentrations are routinely observed without a clear relation to clinical incident cases. Methods Results are presented for WWS from six municipalities in the eastern part of Canada during the spring of 2021. We developed a numerical model based on viral kinetics reduction functions to consider both prevalent and incident cases to interpret the WWS data in light of the reported clinical cases in the six surveyed communities. Results The use of the proposed numerical model with a viral kinetics reduction function drastically increased the interpretability of the WWS data in terms of the clinical cases reported for the surveyed community. In line with our working hypothesis, the effects of viral kinetics reduction modeling were more important in small communities than in larger communities. In all but one of the community cases (where it had no effect), the use of the proposed numerical model led to a change from a +1.5% (for the larger urban center, Quebec City) to a +48.8% increase in the case of a smaller community (Drummondville). Conclusion Consideration of prevalent and incident cases through the proposed numerical model increases the correlation between clinical cases and WWS data. This is particularly the case in small communities. Because the proposed model is based on a biological mechanism, we believe it is an inherent part of any wastewater system and, hence, that it should be used in any WWS analysis where the aim is to relate WWS measurement to clinical cases.
Collapse
Affiliation(s)
- Marc-Denis Rioux
- Department of Mathematics and Engineering, Université du Québec à Rimouski, Quebec, QC, Canada
| | - François Guillemette
- Department of Environmental Science, Université du Québec à Trois-Rivière, Quebec, QC, Canada
| | - Karine Lemarchand
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Quebec, QC, Canada
| | - Kim Doiron
- Northern Institute for Research in Environment and Occupational Health and Safety, Quebec, QC, Canada
| | - Jean-François Lemay
- Centre National en Électrochimie et Technologies Environnementales, Cegep of Shawinigan, Quebec, QC, Canada
| | - Thomas Maere
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Quebec, QC, Canada
| | - Patrick Dolcé
- Centre Intégré de Santé et de services sociaux du Bas-Saint-Laurent, Quebec, QC, Canada
| | - Patrik Quessy
- Centre National en Électrochimie et Technologies Environnementales, Cegep of Shawinigan, Quebec, QC, Canada
| | - Nanouk Abonnenc
- Centre National en Électrochimie et Technologies Environnementales, Cegep of Shawinigan, Quebec, QC, Canada
| | - Peter A. Vanrolleghem
- modelEAU, Département de génie civil et de génie des eaux, Université Laval, Quebec, QC, Canada
| | - Dominic Frigon
- Department of Civil Engineering, McGill University, Quebec, QC, Canada
| |
Collapse
|
11
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
12
|
Baseline Sequencing Surveillance of Public Clinical Testing, Hospitals, and Community Wastewater Reveals Rapid Emergence of SARS-CoV-2 Omicron Variant of Concern in Arizona, USA. mBio 2023; 14:e0310122. [PMID: 36622143 PMCID: PMC9972916 DOI: 10.1128/mbio.03101-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The adaptive evolution of SARS-CoV-2 variants is driven by selection for increased viral fitness in transmissibility and immune evasion. Understanding the dynamics of how an emergent variant sweeps across populations can better inform public health response preparedness for future variants. Here, we investigated the state-level genomic epidemiology of SARS-CoV-2 through baseline genomic sequencing surveillance of 27,071 public testing specimens and 1,125 hospital inpatient specimens diagnosed between November 1, 2021, and January 31, 2022, in Arizona. We found that the Omicron variant rapidly displaced Delta variant in December 2021, leading to an "Omicron surge" of COVID-19 cases in early 2022. Wastewater sequencing surveillance of 370 samples supported the synchronous sweep of Omicron in the community. Hospital inpatient COVID-19 cases of Omicron variant presented to three major hospitals 10.51 days after its detection from public clinical testing. Nonsynonymous mutations in nsp3, nsp12, and nsp13 genes were significantly associated with Omicron hospital cases compared to community cases. To model SARS-CoV-2 transmissions across the state population, we developed a scalable sequence network methodology and showed that the Omicron variant spread through intracounty and intercounty transmissions. Finally, we demonstrated that the temporal emergence of Omicron BA.1 to become the dominant variant (17.02 days) was 2.3 times faster than the prior Delta variant (40.70 days) or subsequent Omicron sublineages BA.2 (39.65 days) and BA.5 (35.38 days). Our results demonstrate the uniquely rapid sweep of Omicron BA.1. These findings highlight how integrated public health surveillance can be used to enhance preparedness and response to future variants. IMPORTANCE SARS-CoV-2 continues to evolve new variants throughout the pandemic. However, the temporal dynamics of how SARS-CoV-2 variants emerge to become the dominant circulating variant is not precisely known. Genomic sequencing surveillance offers unique insights into how SARS-CoV-2 spreads in communities and the lead-up to hospital cases during a surge. Specifically, baseline sequencing surveillance through random selection of positive diagnostic specimens provides a representative outlook of the virus lineages circulating in a geographic region. Here, we investigated the emergence of the Omicron variant of concern in Arizona by leveraging baseline genomic sequence surveillance of public clinical testing, hospitals, and community wastewater. We tracked the spread and evolution of the Omicron variant as it first emerged in the general public, and its rapid shift in hospital admissions in the state health system. This study demonstrates the timescale of public health preparedness needed to respond to an antigenic shift in SARS-CoV-2.
Collapse
|
13
|
Acosta N, Bautista MA, Waddell BJ, Du K, McCalder J, Pradhan P, Sedaghat N, Papparis C, Beaudet AB, Chen J, Van Doorn J, Xiang K, Chan L, Vivas L, Low K, Lu X, Lee J, Westlund P, Chekouo T, Dai X, Cabaj J, Bhatnagar S, Ruecker N, Achari G, Clark RG, Pearce C, Harrison JJ, Meddings J, Leal J, Ellison J, Missaghi B, Kanji JN, Larios O, Rennert‐May E, Kim J, Hrudey SE, Lee BE, Pang X, Frankowski K, Conly J, Hubert CRJ, Parkins MD. Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. J Med Virol 2023; 95:e28442. [PMID: 36579780 PMCID: PMC9880705 DOI: 10.1002/jmv.28442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Barbara J. Waddell
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Jianwei Chen
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Kevin Xiang
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Leslie Chan
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Laura Vivas
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Kashtin Low
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Xuewen Lu
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jangwoo Lee
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Thierry Chekouo
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
- Division of Biostatistics, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaotian Dai
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jason Cabaj
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Provincial Population & Public HealthAlberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | - Srijak Bhatnagar
- Faculty of Science and TechnologyAthabasca UniversityAthabascaAlbertaCanada
| | | | - Gopal Achari
- Department of Civil EngineeringUniversity of CalgaryCalgaryCanada
| | - Rhonda G. Clark
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Craig Pearce
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Joe J. Harrison
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jon Meddings
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jenine Leal
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jennifer Ellison
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Bayan Missaghi
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jamil N. Kanji
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Oscar Larios
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
| | - Elissa Rennert‐May
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Joseph Kim
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Department of Analytical and Environmental ToxicologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Bonita E. Lee
- Department of PediatricsUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children's Health Research InstituteEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Xiaoli Pang
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin Frankowski
- Advancing Canadian Water AssetsUniversity of CalgaryCalgaryCanada
| | - John Conly
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | | | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| |
Collapse
|
14
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|