1
|
Richard G, Hervé S, Chastagner A, Quéguiner S, Beven V, Hirchaud E, Barbier N, Gorin S, Blanchard Y, Simon G. Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020. Virus Evol 2024; 11:veae112. [PMID: 39882310 PMCID: PMC11776742 DOI: 10.1093/ve/veae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022. Molecular subtyping revealed a marked increase in H1avN2 cases from 2020 onwards, altering the previously stable subtypes' distribution. Whole-genome sequencing and phylogenetic analyses of H1av (1C) strains identified 10 circulating genotypes, including 5 new genotypes. The most predominant genotype from 2020 onwards, denominated H1avN2#E, was characterized by an HA-1C.2.4, an N2-Gent/84, and internal protein-encoding genes belonging to a newly defined subclade within the Eurasian avian-like (EA) lineage termed EA-DK. H1avN2#E emerged in Brittany, the country's most pig-dense region, and rapidly became the most frequently detected swIAV genotype across France. This drastic change in the swIAV lineage proportions at a national scale was unprecedented, making H1avN2#E a unique case for understanding swIAV evolution and spreading patterns. Phylogenetic analyses suggested an introduction of the H1avN2#E genotype from a restricted source, likely originating from Denmark. It spread rapidly with low genetic diversity at the start of the epizootic in 2020, showing increasing diversification in 2021 and 2022 as the inferred population size grew and stabilized, and exhibited reassortments with other enzootic genotypes. Amino acid sequence alignments of H1avN2#E antigenic sites revealed major mutations and deletions compared to commercial vaccine 1C strain (HA-1C.2.2) and previously predominant H1avN1 strains (HA-1C.2.1). Antigenic cartography confirmed significant antigenic distances between H1avN2#E and other 1C strains, suggesting that the new genotype has escaped the pre-existing immunity of the swine population. Epidemiologically, the H1avN2#E virus exhibited epizootic hallmarks with more severe clinical outcomes compared to H1avN1 viruses. These factors likely contributed to the spread of H1avN2#E within the pig population. The rapid rise of H1avN2#E highlighted the dynamic nature of swIAV genetic and antigenic diversity, underscoring the importance of tailored surveillance programs to support risk assessment during potential new outbreaks. It also demonstrates the need to strengthen biosecurity measures when introducing pigs into a herd, including swIAV positivity assessment followed by quarantine, and restrict the trade of swIAV-excreting live swine between European countries.
Collapse
Affiliation(s)
- Gautier Richard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Séverine Hervé
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Amélie Chastagner
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Stéphane Quéguiner
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Véronique Beven
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Viral Genetic and Biosecurity Unit, BP53, Ploufragan 22440, France
| | - Edouard Hirchaud
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Viral Genetic and Biosecurity Unit, BP53, Ploufragan 22440, France
| | - Nicolas Barbier
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Stéphane Gorin
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| | - Yannick Blanchard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Viral Genetic and Biosecurity Unit, BP53, Ploufragan 22440, France
| | - Gaëlle Simon
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France
| |
Collapse
|
2
|
Klivleyeva N, Saktaganov N, Glebova T, Lukmanova G, Ongarbayeva N, Webby R. Influenza A Viruses in the Swine Population: Ecology and Geographical Distribution. Viruses 2024; 16:1728. [PMID: 39599843 PMCID: PMC11598916 DOI: 10.3390/v16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the efforts of practical medicine and virology, influenza viruses remain the most important pathogens affecting human and animal health. Swine are exposed to infection with all types of influenza A, B, C, and D viruses. Influenza viruses have low pathogenicity for swine, but in the case of co-infection with other pathogens, the outcome can be much more serious, even fatal. Having a high zoonotic potential, swine play an important role in the ecology and spread of influenza to humans. In this study, we review the state of the scientific literature on the zoonotic spread of swine influenza A viruses among humans, their circulation in swine populations worldwide, reverse zoonosis from humans to swine, and their role in interspecies transmission. The analysis covers a long period to trace the ecology and evolutionary history of influenza A viruses in swine. The following databases were used to search the literature: Scopus, Web of Science, Google Scholar, and PubMed. In this review, 314 papers are considered: n = 107 from Asia, n = 93 from the U.S., n = 86 from Europe, n = 20 from Africa, and n = 8 from Australia. According to the date of publication, they are conditionally divided into three groups: contemporary, released from 2011 to the present (n = 121); 2000-2010 (n = 108); and 1919-1999 (n = 85).
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nurbol Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Tatyana Glebova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Galina Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nuray Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| |
Collapse
|
3
|
Limaye S, Shelke A, Kale MM, Kulkarni-Kale U, Kuchipudi SV. IDV Typer: An Automated Tool for Lineage Typing of Influenza D Viruses Based on Return Time Distribution. Viruses 2024; 16:373. [PMID: 38543738 PMCID: PMC10976072 DOI: 10.3390/v16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Anant Shelke
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Mohan M. Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India;
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Kwasnik M, Rola J, Rozek W. Influenza D in Domestic and Wild Animals. Viruses 2023; 15:2433. [PMID: 38140674 PMCID: PMC10748149 DOI: 10.3390/v15122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.
Collapse
Affiliation(s)
| | | | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (J.R.)
| |
Collapse
|