1
|
Mishra R, Kilroy MK, Feroz W, Patel H, Garrett JT. HER3 V104 mutations regulate cell signaling, growth, and drug sensitivity in cancer. Mol Carcinog 2024; 63:1528-1541. [PMID: 38751013 DOI: 10.1002/mc.23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
HER3 is mutated in ~2%-10% of cancers depending on the cancer type. We found the HER3-V104L mutation to be activating from patient-derived mutations introduced via lentiviral transduction in HER3KO HER2 + HCC1569 breast cancer cells in which endogenous HER3 was eliminated by CRISPR/Cas9. Cells expressing HER3-V104L showed higher p-HER3 and p-ERK1/2 expression versus cells expressing wild-type HER3 or HER3-V104M. Patients whose tumor expressed the HER3 V104L variant had a reduced probability of overall survival compared to patients lacking a HER3 mutation whereas we did not find a statistically significant difference in overall survival of various cancer patients with the HER3 V104M mutation. Our data showed that HER2 inhibitors suppressed cell growth of HCC1569HER3KO cells stably expressing the HER3-V104L mutation. Cancer cell lines (SNU407, UC15 and DV90) with endogenous HER3-V104M mutation showed reduced cell proliferation and p-HER2/p-ERK1/2 expression with HER2 inhibitor treatment. Knock down of HER3 abrogated cell proliferation in the above cell lines which were overall more sensitive to the ERK inhibitor SCH779284 versus PI3K inhibitors. HER3-V104L mutation stabilized HER3 protein expression in COS7 and SNUC5 cells. COS7 cells transiently transfected with the HER3-V104L mutation in the presence of HER binding partners showed higher expression of p-HER3, p-ERK1/2 versus HER3-WT in a NRG-independent manner without any change in AKT signaling. Overall, this study shows the clinical relevance of the HER3 V104L and the V104M mutations and its response to HER2, PI3K and ERK inhibitors.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Kate Kilroy
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wasim Feroz
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hima Patel
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joan T Garrett
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Leary JB, Enright T, Bakaloudi DR, Basnet A, Bratslavsky G, Jacob J, Spiess PE, Li R, Necchi A, Kamat AM, Pavlick DC, Danziger N, Huang RSP, Lin DI, Cheng L, Ross J, Talukder R, Grivas P. Frequency and Nature of Genomic Alterations in ERBB2-Altered Urothelial Bladder Cancer. Target Oncol 2024; 19:447-458. [PMID: 38570422 DOI: 10.1007/s11523-024-01056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Human epidermal growth factor-2 (HER2) overexpression is an oncogenic driver in many solid tumors, including urothelial bladder cancer (UBC). In addition, activating mutations in the ERBB2 gene have been shown to play an oncogenic role similar to ERBB2 amplification. OBJECTIVE To describe and compare the frequency and nature of genomic alterations (GA) of ERBB2-altered (mutations, amplification) and ERBB2 wild-type UBC. PATIENTS AND METHODS Using a hybrid capture-based comprehensive profiling assay, 9518 UBC cases were grouped by ERBB2 alteration and evaluated for all classes of genomic alterations (GA), tumor mutational burden (TMB), microsatellite instability (MSI), genome-wide loss of heterozygosity (gLOH), and genomic mutational signature. PD-L1 expression was measured by immunohistochemistry (Dako 22C3). Categorical statistical comparisons were performed using Fisher's exact tests. RESULTS A total of 602 (6.3%) UBC cases featured ERBB2 extracellular domain short variant (SV) GA (ECDmut+), 253 (2.7%) cases featured ERBB2 kinase domain SV GA (KDmut+), 866 (9.1%) cases had ERBB2 amplification (amp+), and 7797 (81.9%) cases were ERBB2 wild-type (wt). European genetic ancestry of ECDmut+ was higher than ERBB2wt. Numerous significant associations were observed when comparing GA by group. Notably among these, CDKN2A/MTAP loss were more frequent in ERBB2wt versus ECDmut+ and amp+. ERBB3 GA were more frequent in ECDmut+ and KDmut+ than ERBB2wt. TERT GA were more frequent in ECDmut+, KDmut+, and amp+ versus ERBB2wt. TOP2A amplification was significantly more common in ECDmut+ and amp+ versus ERBB2wt, and TP53 SV GA were significantly higher in ERBB2 amp+ versus ERBB2wt. Mean TMB levels were significantly higher in ECDmut+, KDmut+, and amp+ than in ERBB2wt. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBEC) signature was more frequent in ECDmut+, KDmut+, and amp+ versus ERBB2wt. No significant differences were observed in PD-L1 status between groups, while gLOH-high status was more common in amp+ versus ERBB2wt. MSI-high status was more frequent in KDmut+ versus ERBB2wt, and in ERBB2wt than in amp+. CONCLUSIONS We noted important differences in co-occurring GA in ERBB2-altered (ECDmut+, KDmut+, amp+) versus ERBB2wt UBC, as well as higher mean TMB and higher APOBEC mutational signature in the ERBB2-altered groups. Our results can help refine future clinical trial designs and elucidate possible response and resistance mechanisms for ERBB2-altered UBC.
Collapse
Affiliation(s)
- Jacob B Leary
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas Enright
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alina Basnet
- SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Joseph Jacob
- SUNY Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
- Legoretta Cancer Center at Brown University, Providence, RI, USA
- Lifespan Academic Medical Center, Providence, RI, USA
| | | | | | - Petros Grivas
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Yu F, Zhao LX, Chu S. TCHH as a Novel Prognostic Biomarker for Patients with Gastric Cancer by Bioinformatics Analysis. Clin Exp Gastroenterol 2024; 17:61-74. [PMID: 38434179 PMCID: PMC10906726 DOI: 10.2147/ceg.s451676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Background This study aims to investigate the clinicopathological significance and prognostic value of Trichohyalin (TCHH) in gastric cancer patients through bioinformatics analysis. Materials and Methods Data on TCHH expression and clinicopathological information were sourced from The Cancer Genome Atlas (TCGA). The Wilcoxon signed-rank test was used for evaluating the correlation between TCHH mRNA expression levels and clinicopathological features. The predictive significance of TCHH mRNA expression for overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in patients with gastric cancer was assessed using Cox regression models. Furthermore, measures of immune cell infiltration in gastric cancer were made, and studies of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were also carried out to investigate the possible roles of TCHH in patients with gastric cancer. Results Compared to normal tissues, gastric cancer had a considerably higher expression of TCHH mRNA (P < 0.05). Wilcoxon analysis revealed a significant association between TCHH mRNA expression and the pathologic M stage (P = 0.017). High TPMT mRNA levels were also correlated with worse OS, DFS, and PFI in gastric cancer patients (both P < 0.05). TCHH showed significant negative correlations with the levels of NK CD56dim infiltration (r = -0.157, p = 0.002), Th17 cells infiltration (r = -0.235, P < 0.001), and Th2 infiltration (r = -0.195, P < 0.001). Furthermore, enrichment analysis indicated potential involvement in intermediate filament cytoskeleton organization, DNA methylation in gamete generation, cell-cell recognition, and G protein-coupled peptide receptor (GPCRs) activity. Conclusion The level of TCHH mRNA may serve as a novel prognostic biomarker for gastric cancer patients.
Collapse
Affiliation(s)
- Fu Yu
- Department of Medical Oncology, Mingguang People’s Hospital of Anhui Province in China, Chuzhou, 239400, People’s Republic of China
| | - Li Xia Zhao
- Department of Radiation Oncology, Jieshou People’s Hospital of Anhui Province in China, Fuyang, 236500, People’s Republic of China
| | - Shangqi Chu
- Department of Medical Oncology, Nantong Haimen District People’s Hospital, Nantong, Jiangsu Province, 226100, People’s Republic of China
| |
Collapse
|
4
|
Font A, Mellado B, Climent MA, Virizuela JA, Oudard S, Puente J, Castellano D, González-Del-Alba A, Pinto A, Morales-Barrera R, Rodriguez-Vida A, Fernandez PL, Teixido C, Jares P, Aldecoa I, Gibson N, Solca F, Mondal S, Lorence RM, Serra J, Real FX. Phase II trial of afatinib in patients with advanced urothelial carcinoma with genetic alterations in ERBB1-3 (LUX-Bladder 1). Br J Cancer 2024; 130:434-441. [PMID: 38102226 PMCID: PMC10844502 DOI: 10.1038/s41416-023-02513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Preclinical and early clinical data suggest that the irreversible ErbB family blocker afatinib may be effective in urothelial cancers harbouring ERBB mutations. METHODS This open-label, phase II, single-arm trial (LUX-Bladder 1, NCT02780687) assessed the efficacy and safety of second-line afatinib 40 mg/d in patients with metastatic urothelial carcinoma with ERBB1-3 alterations. The primary endpoint was 6-month progression-free survival rate (PFS6) (cohort A); other endpoints included ORR, PFS, OS, DCR and safety (cohorts A and B). Cohort A was planned to have two stages: stage 2 enrolment was based on observed antitumour activity. RESULTS Thirty-four patients were enroled into cohort A and eight into cohort B. In cohorts A/B, PFS6 was 11.8%/12.5%, ORR was 5.9%/12.5%, DCR was 50.0%/25.0%, median PFS was 9.8/7.8 weeks and median OS was 30.1/29.6 weeks. Three patients (two ERBB2-amplified [cohort A]; one EGFR-amplified [cohort B]) achieved partial responses. Stage 2 for cohort A did not proceed. All patients experienced adverse events (AEs), most commonly (any/grade 3) diarrhoea (76.2%/9.5%). Two patients (4.8%) discontinued due to AEs and one fatal AE was observed (acute coronary syndrome; not considered treatment-related). CONCLUSIONS An exploratory biomarker analysis suggested that basal-squamous tumours and ERBB2 amplification were associated with superior response to afatinib. CLINICAL TRIAL REGISTRATION NCT02780687.
Collapse
Grants
- The conduct of this research, study design, data collection and analysis were financially supported by Boehringer Ingelheim. The authors did not receive payment related to the development of this manuscript. Medical writing assistance, funded by Boehringer Ingelheim, was provided by Sharmin Bovill, PhD, and Jim Sinclair, PhD, of Ashfield MedComms, an Inizio Company, during the preparation of this manuscript.
Collapse
Affiliation(s)
- Albert Font
- Medical Oncology Department, Institut Català d'Oncologia, Badalona Applied Research Group in Oncology (BARGO), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Begona Mellado
- Medical Oncology Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | - Miguel A Climent
- Medical Oncology Department, Instituto Valenciano de Oncología (IVO), València, Spain
| | | | - Stephane Oudard
- Medical Oncology Department, Hôpital Européen George Pompidou, University of Paris, Paris, France
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | - Daniel Castellano
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Alvaro Pinto
- Medical Oncology Department, Hospital Universitario La Paz, Instituto de Investigacion Sanitaria Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejo Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar, IMIM Research Institute, Barcelona, Spain
| | - Pedro L Fernandez
- Pathology Department, Hospital Germans Trias i Pujol, IGTP, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Teixido
- Pathology Department, Hospital Clínic Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Translational Genomics and Targeted Therapeutics in Solid Tumors, Barcelona, Spain
| | - Pedro Jares
- Molecular Biology CORE and Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Iban Aldecoa
- Pathology Department, Hospital Clínic Barcelona - University of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Neil Gibson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Shoubhik Mondal
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | | - Josep Serra
- Boehringer Ingelheim España, S.A., Barcelona, Spain
| | - Francisco X Real
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
6
|
Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NADS, Eriksson P, Black EVI, Alder O, Lawson ARJ, Lindskrog SV, Burns JE, Jain S, Roulson JA, Brown JC, Koster J, Robertson AG, Martincorena I, Dyrskjøt L, Höglund M, Knowles MA. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep Med 2021; 2:100472. [PMID: 35028613 PMCID: PMC8714941 DOI: 10.1016/j.xcrm.2021.100472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | | | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma V I Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Joanne C Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
7
|
Merrill NM, Vandecan NM, Day KC, Palmbos PL, Day ML, Udager AM, Merajver SD, Soellner MB. MEK is a promising target in the basal subtype of bladder cancer. Oncotarget 2020; 11:3921-3932. [PMID: 33216841 PMCID: PMC7646827 DOI: 10.18632/oncotarget.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/24/2020] [Indexed: 12/03/2022] Open
Abstract
While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Identification of candidate mediators of chemoresponse in breast cancer through therapy-driven selection of somatic variants. Breast Cancer Res Treat 2020; 183:607-616. [PMID: 32734521 PMCID: PMC7497675 DOI: 10.1007/s10549-020-05836-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Purpose More than a third of primary breast cancer patients are treated with cytotoxic chemotherapy, typically without guidance from predictive markers. Increased use of neoadjuvant chemotherapy provides opportunities for identification of molecules associated with treatment response, by comparing matched tumour samples before and after therapy. Our hypothesis was that somatic variants of increased prevalence after therapy promote resistance, while variants with reduced prevalence cause sensitivity. Methods We performed systematic analyses of matched pairs of cancer exomes from primary oestrogen receptor-positive/HER2-negative breast cancers (n = 6) treated with neoadjuvant epirubicin/cyclophosphamide. We identified candidate genes as mediators of chemotherapy response by consistent subclonal changes in somatic variant prevalence through therapy, predicted variant impact on gene function, and enrichment of specific functional pathways. Influence of candidate genes on breast cancer outcome was tested using publicly available breast cancer expression data (n = 1903). Results We identified 14 genes as the strongest candidate mediators of chemoresponse: TCHH, MUC17, ARAP2, FLG2, ABL1, CENPF, COL6A3, DMBT1, ITGA7, PLXNA1, S100PBP, SYNE1, ZFHX4, and CACNA1C. Genes contained somatic variants showing prevalence changes in up to 4 patients, with up to 3 being predicted as damaging. Genes coding for extra-cellular matrix components or related signalling pathways were significantly over-represented among variants showing prevalence changes. Expression of 5 genes (TCHH, ABL1, CENPF, S100PBP, and ZFHX4) was significantly associated with patient survival. Conclusions Genomic analysis of paired pre- and post-therapy samples resulting from neoadjuvant therapy provides a powerful method for identification of mediators of response. Genes we identified should be assessed as predictive markers or targets in chemo-sensitization. Electronic supplementary material The online version of this article (10.1007/s10549-020-05836-7) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Tan X, Broses LJ, Zhou M, Day KC, Liu W, Li Z, Weizer AZ, Munson KA, Khaing Oo MK, Day ML, Fan X. Multiparameter urine analysis for quantitative bladder cancer surveillance of orthotopic xenografted mice. LAB ON A CHIP 2020; 20:634-646. [PMID: 31922156 DOI: 10.1039/c9lc01006h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human-derived orthotopic xenograft mouse model is an effective platform for performing in vivo bladder cancer studies to examine tumor development, metastasis, and therapeutic effects of drugs. To date, the surveillance of tumor progression in real time for orthotopic bladder xenografts is highly dependent on semi-quantitative in vivo imaging technologies such as bioluminescence. While these imaging technologies can estimate tumor progression, they are burdened with requirements such as anesthetics, specialized equipment, and genetic modification of the injected cell line. Thus, a convenient and non-invasive technology to quantitatively monitor the growth of bladder cancer in orthotopic xenografts is highly desired. In this work, using a microfluidic chemiluminescent ELISA platform, we have successfully developed a rapid, multiparameter urine-based and non-invasive biomolecular prognostic technology for orthotopic bladder cancer xenografts. This method consists of two steps. First, the concentrations of a panel of four urinary biomarkers are quantified from the urine of mice bearing orthotopic bladder xenografts. Second, machine learning and principal component analysis (PCA) algorithms are applied to analyze the urinary biomarkers, and subsequently, a score is assigned to indicate the tumor growth. With this methodology, we have quantitatively monitored the orthotopic growth of human bladder cancer that was inoculated with low, medium, and high cancer cell numbers. We also employed this method and performed a proof of principle experiment to examine the in vivo therapeutic efficacy of the EGFR inhibitor, dacomitinib.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine A Munson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Bankhead A, McMaster T, Wang Y, Boonstra PS, Palmbos PL. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine 2020; 51:102561. [PMID: 31927310 PMCID: PMC6953644 DOI: 10.1016/j.ebiom.2019.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Half of muscle-invasive bladder cancer patients will relapse with metastatic disease and molecular tests to predict relapse are needed. TP63 has been proposed as a prognostic biomarker in bladder cancer, but reports associating it with clinical outcomes are conflicting. Since TP63 is expressed as multiple isoforms, we hypothesized that these conflicting associations with clinical outcome may be explained by distinct opposing effects of differential TP63 isoform expression. Methods Using RNA-Seq data from The Cancer Genome Atlas (TCGA), TP63 isoform-level expression was quantified and associated with clinical covariates (e.g. survival, stage) across 8,519 patients from 29 diseases. A comprehensive catalog of TP63 isoforms was assembled using gene annotation databases and de novo discovery in bladder cancer patients. Quantifications and un-annotated TP63 isoforms were validated using quantitative RT-PCR and a separate bladder cancer cohort. Findings DNp63 isoform expression was associated with improved bladder cancer patient survival in patients with a luminal subtype (HR = 0.89, CI 0.80–0.99, Cox p = 0.034). Conversely, TAp63 isoform expression was associated with reduced bladder cancer patient survival in patients with a basal subtype (HR = 2.35, CI 1.64–3.37, Cox p < 0.0001). These associations were observed in multiple TCGA disease cohorts and correlated with epidermal differentiation (DNp63) and immune-related (TAp63) gene signatures. Interpretation These results comprehensively define TP63 isoform expression in human cancer and suggest that TP63 isoforms are involved in distinct transcriptional programs with opposing effects on clinical outcome.
Collapse
Affiliation(s)
- Armand Bankhead
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas McMaster
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yin Wang
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip S Boonstra
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Merrill NM, Lachacz EJ, Vandecan NM, Ulintz PJ, Bao L, Lloyd JP, Yates JA, Morikawa A, Merajver SD, Soellner MB. Molecular determinants of drug response in TNBC cell lines. Breast Cancer Res Treat 2020; 179:337-347. [PMID: 31655920 PMCID: PMC7323911 DOI: 10.1007/s10549-019-05473-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs. METHODS Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a panel of investigational drugs and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and functional proteomics. DSS3 values were correlated with molecular readouts using a FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy. RESULTS Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines. CONCLUSIONS These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular determinants and optimal companion drugs for combination therapy based on these correlates.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Eric J Lachacz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - John P Lloyd
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Joel A Yates
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Aki Morikawa
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 2019; 39:487-502. [DOI: 10.1038/s41388-019-1001-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023]
|
13
|
Cocco E, Lopez S, Santin AD, Scaltriti M. Prevalence and role of HER2 mutations in cancer. Pharmacol Ther 2019; 199:188-196. [PMID: 30951733 DOI: 10.1016/j.pharmthera.2019.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
HER2 activating mutations act as oncogenic drivers in various cancer types. In the clinic, they can be identified by next generation sequencing (NGS) in either tumor biopsies or circulating cell-free DNA (cfDNA). Preclinical data indicate that HER2 "hot spot" mutations are constitutively active, have transforming capacity in vitro and in vivo and show variable sensitivity to anti-HER2 based therapies. Recent clinical trials also revealed activity of HER2-targeted drugs against a variety of tumors harboring HER2 mutations. Here, we review the prevalence and type of HER2 mutations identified in different human cancers, their biochemical and biological characterization, and their sensitivity to anti HER2-based therapies in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Emiliano Cocco
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Lopez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, United States of America.
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
ATDC mediates a TP63-regulated basal cancer invasive program. Oncogene 2019; 38:3340-3354. [PMID: 30643195 PMCID: PMC6499660 DOI: 10.1038/s41388-018-0646-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Basal subtype cancers are deadly malignancies but the molecular events driving tumor lethality are not completely understood. Ataxia-Telangiectasia Group D Complementing gene (ATDC, also known as TRIM29), is highly expressed and drives tumor formation and invasion in human bladder cancers but the factor(s) regulating its expression in bladder cancer are unknown. Molecular subtyping of bladder cancer has identified an aggressive basal subtype which shares molecular features of basal/squamous tumors arising in other organs and is defined by activation of a TP63-driven gene program. Here we demonstrate that ATDC is linked with expression of TP63 and highly expressed in basal bladder cancers. We find that TP63 binds to transcriptional regulatory regions of ATDC and KRT14 directly, increasing their expression, and that ATDC and KRT14 execute a TP63-driven invasive program. In vivo, ATDC is required for TP63-induced bladder tumor invasion and metastasis. These results link TP63 and the basal gene expression program to ATDC and to aggressive tumor behavior. Defining ATDC as a molecular determinant of aggressive, basal cancers may lead to improved biomarkers and therapeutic approaches.
Collapse
|
15
|
Hovelson DH, Udager AM, McDaniel AS, Grivas P, Palmbos P, Tamura S, Lazo de la Vega L, Palapattu G, Veeneman B, El-Sawy L, Sadis SE, Morgan TM, Montgomery JS, Weizer AZ, Day KC, Neamati N, Liebert M, Keller ET, Day ML, Mehra R, Tomlins SA. Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous Bladder Cancers Reveals Discordant Genomic and Transcriptomic Events and Unique Therapeutic Implications. Eur Urol 2018; 74:741-753. [DOI: 10.1016/j.eururo.2018.06.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
|
16
|
Xiao Q, Chen L, Luo H, Li H, Kong Q, Jiao F, Pang S, Zhang M, Lan F, Fan W, Luo H, Tao T, Zhu X. A rare CHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk. BMC Cancer 2018; 18:658. [PMID: 29907144 PMCID: PMC6003142 DOI: 10.1186/s12885-018-4551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4551-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Xiao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lianzhou Chen
- Digestive System Tumor Tissue Bank, Center of Surgery Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,The Affiliated Hospital Cancer Center, Guangdong Medical University, Zhanjiang, China
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Qingming Kong
- Immunity and Biochemical Research Lab, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shifeng Pang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Ming Zhang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Feifei Lan
- Forensic Identification Institute, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| |
Collapse
|