1
|
Fu PS, Wang JC, Lai PL, Liu SM, Chen YS, Chen WC, Hung CC. Effects of Gamma Radiation on the Sterility Assurance, Antibacterial Ability, and Biocompatibility of Impregnated Hydrogel Macrosphere Protein and Drug Release. Polymers (Basel) 2021; 13:938. [PMID: 33803715 PMCID: PMC8003089 DOI: 10.3390/polym13060938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Devices and medicines used in the medical field must be sterile. Gamma (γ)-irradiation is commonly used for sterilization because its high rate of penetration ensures uniform sterilization. To confirm that hydrogel macrosphere carriers inherit excellent liquid absorption with no cytotoxicity after γ-irradiation sterilization, investigating whether the physiochemical properties of hydrogel macrospheres differ before and after sterilization is essential. The present study evaluated the influence of the recommended 25-kGy γ-irradiation dose on the physicochemical characteristics and in vitro release of bovine serum albumin and vancomycin (an antibiotic medication) from alginate/gelatin with a w/w ratio of 1/4 crosslinking gel macrospheres. Gel macrosphere properties before and after sterilization were compared according to optical and scanning electron microscopy, infrared spectroscopy analysis, the amino residual crosslinking index, water absorption, degradation, sterility assurance, in vitro drug release, antibacterial ability, and cytotoxicity. The crosslinking index was almost unchanged; however, the γ-irradiation caused in situ hydrogel debonding and recrosslinking, which led to a decrease in the water absorption and increase in the degradation rate of the macrospheres after immersion. The release of gel macrospheres carrying vancomycin did not significantly affect antibacterial ability or biocompatibility after γ-irradiation. Accordingly, we conclude that γ-irradiation is suitable for macrospherical formulation.
Collapse
Affiliation(s)
- Po-Sung Fu
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.F.); (J.-C.W.)
- Department of Dentistry, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jen-Chyan Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.F.); (J.-C.W.)
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan;
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Pei-Ling Lai
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan;
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (S.-M.L.); (Y.-S.C.)
| | - Ya-Shun Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (S.-M.L.); (Y.-S.C.)
| | - Wen-Cheng Chen
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (S.-M.L.); (Y.-S.C.)
| | - Chun-Cheng Hung
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.F.); (J.-C.W.)
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan;
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar Drugs 2020; 18:E168. [PMID: 32197494 PMCID: PMC7143672 DOI: 10.3390/md18030168] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.
Collapse
Affiliation(s)
- Ana Dobrinčić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.B.); (Z.Z.); (S.P.); (D.B.K.); (I.E.G.); (V.D.-U.)
| | | | | | | | | | | | | |
Collapse
|