1
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Zhang WT, Wang YJ, Zhang GX, Zhang YH, Gao SS. Diagnostic value of circulating microRNAs for esophageal cancer: a meta-analysis based on Asian data. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:504-514. [PMID: 35040334 DOI: 10.17235/reed.2022.8348/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE esophageal cancer (EC) is one of the most common gastrointestinal malignant diseases. We conducted a comprehensive meta-analysis to explore the clinical applicability of circulating microRNA for the diagnosis of EC. METHODS as of September 10, 2021, a comprehensive literature search was conducted on PubMed, Embase, Web of Science, Cochrane Library, Wanfang Database, and China National Knowledge Infrastructure (CNKI) to identify eligible studies. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were pooled to evaluate the test performance. The potential sources of heterogeneity were analyzed by subgroup analysis. Deeks' funnel plot was used to assess publication bias. RESULTS 85 studies from 50 articles were included in the current meta-analysis. The overall pooled sensitivity was 0.82 (95 % CI, 0.79-0.84), specificity was 0.84 (95 % CI, 0.81-0.86), PLR was 4.9 (95 % CI, 4.2-5.9), NLR was 0.22 (95 % CI, 0.19-0.25), DOR was 22 (95 % CI, 17-29) and AUC was 0.89 (95 % CI, 0.86-0.92), respectively. Subgroup analysis suggested that miRNA clusters with a large sample size showed better diagnostic accuracy. Publication bias was not found. CONCLUSIONS circulating miRNAs can be used as a potential non-invasive biomarker for the diagnosis of EC in Asian populations.
Collapse
|
5
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
7
|
Wang W, Dai Y, Yang X, Xiong X. Long non-coding RNA TRPM2 antisense RNA as a potential therapeutic target promotes tumorigenesis and metastasis in esophageal cancer. Bioengineered 2022; 13:4397-4410. [PMID: 35156509 PMCID: PMC9208624 DOI: 10.1080/21655979.2022.2033412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is one type of aggressive gastrointestinal cancers. The treatment of EC is challenging. Effective therapeutic targets require development. Long non-coding RNA TRPM2 antisense RNA (LncRNA TRPM2-AS) is considering a novel biomarker and therapeutic target for various types of cancer. However, the role of lncRNA TRPM2-AS in EC remains unknown. This study aimed to illustrate effects of LncRNA TRPM2-AS on EC growth and metastasis and potential underlying molecular mechanisms. LncRNA TRPM2-AS expression was determined in both EC tissues and cell lines by quantitative real-time polymerase-chain reaction (qRT-PCR). Cell proliferation ability was evaluated by cell counting kit-8 and colony formation assays. Cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were determined using transwell. Epithelial–mesenchymal transition (EMT)-related markers expression were determined using qRT-PCR and Western blotting. Furthermore, potential lncRNA TRPM2-AS targeting miRNAs were predicted by public databases. The expression of five selected miRNAs were validated by qRT-PCR. We found that lncRNA TRPM2-AS expression was increased in EC tissues and cell lines compared with respective control. Silencing lncRNA TRPM2-AS suppressed EC cell proliferation, migration, and invasion while promoted cell apoptosis. Moreover, lncRNA TRPM2-AS knockdown reduced neural cadherin, vimentin, and matrix metallopeptidase 9 gene and protein expressions while increased epithelial cadherin expression. Furthermore, lncRNA TRPM2-AS knockdown promoted microRNA (miR)-1291, miR-6852-5p, and miR-138-5p expressions. Taken together, this study for the first time demonstrates that upregulation of lncRNA TRPM2-AS in EC promotes the growth and metastasis of EC likely through interacting with miR-1291, miR-6852-5p, and miR-138-5p.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou China
| | - Yukai Dai
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou China
| | - Xin Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou China
| | - Xinming Xiong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou China
| |
Collapse
|
8
|
Zou S, Gao Y, Zhang S. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR‑138‑5p in cutaneous squamous cell carcinoma. Int J Oncol 2021; 59:56. [PMID: 34195851 PMCID: PMC8253586 DOI: 10.3892/ijo.2021.5236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are essential for the progression of tumors, including cutaneous squamous cell carcinoma (CSCC). The present study aimed to examine the competing endogenous RNA (ceRNA) network in CSCC. Differentially expressed genes in CSCC were analyzed using the GSE66359 microarray data set, and the upstream miRNAs and lncRNAs were predicted using online database analysis (TargetScan 7.1, mirDIP 4.1, miRSearch V3.0, miRDB and RNA22 2.0) and were verified in clinical tissues. RNA pull-down and dual luciferase reporter gene assays were used to verify the targeting relationships among lncRNA human histocompatibility leukocyte antigen complex P5 (HCP5), miR-138-5p and enhancer of zeste homolog 2 (EZH2). Cell lines with a high and low HCP5 expression were screened, and a pcDNA-3.1-HCP5 overexpression vector, small interfering RNA against HCP5, miR-138-5p mimics and miR-138-5p inhibitors were transfected into the CSCC cells. Cell viability, invasion, migration, apoptotic rate and autophagy were evaluated. The effects of HCP5 on autophagy and apoptosis of CSCC cells were verified in vivo using Ki67 and TUNEL staining. EZH2 was demonstrated to be upregulated in CSCC cells. miR-138-5p target sequences were identified in HCP5 and EZH2. HCP5 was revealed to function as a putative ceRNA of miR-138-5p to positively regulate EZH2, and EZH2 was shown to regulate autophagy and apoptosis of CSCC cells through the STAT3/VEGFR2 pathway. HCP5 overexpression decreased miR-138-5p levels, increased EZH2 levels and promoted cell malignant behaviors and autophagy but decreased the apoptosis rate. These trends were opposite when HCP5 was silenced. In conclusion, HCP5 may competitively bind to miR-138-5p to regulate EZH2 in CSCC cells, promoting autophagy and reducing apoptosis through the STAT3/VEGFR2 pathway. This study may provide a new perspective for understanding the molecular mechanism and treatment of CSCC.
Collapse
Affiliation(s)
- Shibo Zou
- Department of Burn and Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ya Gao
- Department of Burn and Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shutang Zhang
- Department of Burn and Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Meng J, Zhang C, Zhao T, Shi G, Zhao J, Lin Z. MicroRNA-210 targets FBXO31 to inhibit tumor progression and regulates the Wnt/β-catenin signaling pathway and EMT in esophageal squamous cell carcinoma. Thorac Cancer 2021; 12:932-940. [PMID: 33538099 PMCID: PMC7952796 DOI: 10.1111/1759-7714.13860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
Evidence from previous studies showed that the dysregulation of microRNA (miR) is frequently associated with tumor progression. The aberrant miR‐210 expression has been identified in a variety of tumors. However, its biological roles in esophageal squamous cell carcinoma (ESCC) still need further elucidation. Thus, in the current study we explore the roles of miR‐210 in ESCC progression. The findings of our study reveal that miR‐210 is down‐regulated in ESCC, which indicates poor prognosis and aggressive tumor progression. Moreover, miR‐210 restoration was found to enhance ESCC viability, invasion, and migration abilities. F‐Box only protein 31 (FBXO31) was confirmed to be one of the targets of miR‐210 in ESCC cells. Results also revealed that miR‐210 played crucial roles in regulating ESCC cell epithelial‐mesenchymal transition (EMT) and Wnt/β‐catenin signaling. In conclusion, data show that miR‐210 serves as an anti‐ESCC miR via down‐regulation of FBXO31 and regulation of EMT and Wnt signaling, suggesting that the miR‐210/FBXO31 axis may function as promising therapeutic targets and effective prognostic markers for ESCC patients. miR‐210 serves as an anti‐ESCC miR via down‐regulation of FBXO31 and regulation of EMT and Wnt signaling
Collapse
Affiliation(s)
- Jing Meng
- Department of Gastroenterology, Rizhao Hospital of TCM, Rizhao, China
| | - Chao Zhang
- Department of Gastroenterology, Rizhao Hospital of TCM, Rizhao, China
| | - Tongquan Zhao
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Guangwen Shi
- Health Management Center, Zhangqiu District People's Hospital, Jinan, China
| | - Jingjing Zhao
- Department of Surgery, Zhangqiu District People's Hospital, Jinan, China
| | - Zhaoxia Lin
- Department of Clinical Laboratory, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Shen Z, Chai T, Luo F, Liu Z, Xu H, Zhang P, Kang M, Chen S. Loss of miR-204-5p Promotes Tumor Proliferation, Migration, and Invasion Through Targeting YWHAZ/PI3K/AKT Pathway in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:4679-4690. [PMID: 32547097 PMCID: PMC7263804 DOI: 10.2147/ott.s243215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE MicroRNAs dysregulation has been confirmed in multiple malignancies. This paper reported the molecular mechanism of miR-204-5p in esophageal squamous cell carcinoma (ESCC). METHODS miR-204-5p expression in 30 ESCC tumor tissues and 10 normal tissues was downloaded from RNA-seq data. ESCC tissues/normal tissues of 97 ESCC patients were collected. TE-1 and KYSE510 cells were transfected by miR-204-5p mimic, inhibitor, siYWHAZ or their corresponding controls. The phenotype of cells was detected by CCK-8 assay, transwell experiment, and flow cytometry. Luciferase reporter gene assay and RNA-binding protein immunoprecipitation (RIP) were performed to verify the targeting relationship between miR-204-5p and YWHAZ. miR-204-5p and YWHAZ expression in tissues/cells was detected by qRT-PCR and Western blot. Xenograft tumor experiment was performed. RESULTS miR-204-5p expression was declined in ESCC patients and cells, which was indicated the poor outcome of patients. Compared with siNC group, TE-1 cells in miR-204-5p inhibitor group had higher OD450 value, less cell percentage in G1 phase, and more cell percentage in S phase, lower apoptosis percentage, and higher migration and invasion cell numbers. Moreover, KYSE510 cells of miR-204-5p mimic group showed lower OD450 value, more cell percentage in G1 phase and less cell percentage in S phase, higher apoptosis percentage, and lower migration and invasion cell numbers than control. YWHAZ was directly inhibited by miR-204-5p. Relative to siNC group, TE-1 cells of miR-inhibitor group exhibited higher YWHAZ protein expression, higher OD450 value, less cell percentage in G1 phase and more cell percentage in S phase, lower apoptosis percentage, higher migration and invasion cell numbers, and higher p-PI3K/PI3K and p-AKT/AKT protein expression, while siYWHAZ rescued the effects of miR-inhibitor. miR-204-5p up-regulation inhibited ESCC growth in vivo. CONCLUSION miR-204-5p inhibits ESCC progression by targeted inhibition of YWHAZ/PI3K/AKT.
Collapse
Affiliation(s)
- Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Tianci Chai
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Fei Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Zhun Liu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou350001, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou350122, People’s Republic of China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| |
Collapse
|
11
|
Wang Y, Zhang D, Li Y, Fang F. MiR-138 Suppresses the PDK1 Expression to Decrease the Oxaliplatin Resistance of Colorectal Cancer. Onco Targets Ther 2020; 13:3607-3618. [PMID: 32431512 PMCID: PMC7198439 DOI: 10.2147/ott.s242929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background Oxaliplatin is one kind of platinum-based drug. It is effective and commonly used in the treatment of colorectal cancer (CRC). However, development of acquired drug resistance is still a big obstacle during the oxaliplatin therapy. It is urgent to take strategies to decrease the oxaliplatin resistance of CRC. Materials and Methods Oxaliplatin-resistant HT29 and SW480 (HT29/R and SW480/R) cells were acquired through long-term exposure to oxaliplatin by using the routine HT29 and SW480 cells. Relative glucose consumption, lactate generation and LDH activity were tested to evaluate the glycolysis of CRC cell lines. MTT assays were conducted to evaluate the differences of oxaliplatin sensitivity between HT29/R (SW480/R) cells and their parental HT29 (SW480) cells. Regulation of miR-138 on PDK1 was confirmed through qRT-PCR, Western blot and dual-luciferase reporter assays. Reactive oxygen species (ROS) levels were measured by flow cytometry. Results HT29/R and SW480/R cells exhibited higher glucose consumption, lactate production and LDH activity compared to their parental HT29 and SW480 cells. However, oxygen consumption rate (OCR) in HT29/R and SW480/R cells is lower than that in HT29 and SW480 cells, respectively. Results of MTT assays showed that treatment with miR-138 can increase the cytotoxicity of oxaliplatin to HT29/R and SW480/R cells. Research on mechanisms showed that PDK1 was the target of miR-138. Overexpression of miR-138 can inhibit the expression of PDK1, and thus increase the OCR of HT29/R and SW480/R cells. Under the treatment of oxaliplatin, the miR-138-overexpressed HT29/R and SW480/R cells generated more amount of ROS to get into the apoptosis process. Conclusion Overexpression of miR-138 suppressed the PDK1 expression to decrease the oxaliplatin resistance of CRC.
Collapse
Affiliation(s)
- Yao Wang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Duo Zhang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Yao Li
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Fang Fang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| |
Collapse
|
12
|
Sun H, Wang L, Zhao Q, Dai J. Diagnostic and prognostic value of serum miRNA-1290 in human esophageal squamous cell carcinoma. Cancer Biomark 2020; 25:381-387. [PMID: 31306104 DOI: 10.3233/cbm-190007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It is well known that some circulating microRNAs (miRNAs) are highly stable and might serve as promising biomarkers for many types of human cancer including esophageal squamous cell carcinoma (ESCC). However, the potential clinical significance of serum miR-1290 in ESCC remained unknown. OBJECTIVE The aim of this study was to investigate the diagnostic and prognostic value of serum miR-1290 for ESCC. METHODS The expression levels of serum miRNA-1290 in patients with ESCC and healthy controls were detected, and their potential diagnostic and prognostic value was analyzed. RESULTS Our results showed that tissue and serum miR-1290 levels were both significantly elevated in ESCC compared to their respective controls. Tissue miR-1290 levels were highly correlated with serum miR-1290 levels. High serum miR-1290 levels were significantly associated with worse clinicopathological characteristics. Patients with high serum miR-1290 levels had significantly worse survival. Further multivariate analysis showed that serum miR-1290 was an independent risk factor for ESCC. Serum miR-1290 could effectively discriminate ESCC cases from normal controls. CONCLUSIONS The level of serum microRNA-1290 in ESCC patients increased significantly, and its expression level could reflect the progress of ESCC, suggesting that serum microRNA-1290 might be a useful diagnostic and prognostic marker of ESCC.
Collapse
Affiliation(s)
- Haijun Sun
- Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China.,Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Lei Wang
- Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Oncology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China.,Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Qingqing Zhao
- Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China.,Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jianhua Dai
- Nanjing Medical University Affiliated Lianyungang Clinical College, Department of Thoracic Surgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| |
Collapse
|
13
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
14
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|
15
|
Yao C, Liu HN, Wu H, Chen YJ, Li Y, Fang Y, Shen XZ, Liu TT. Diagnostic and Prognostic Value of Circulating MicroRNAs for Esophageal Squamous Cell Carcinoma: a Systematic Review and Meta-analysis. J Cancer 2018; 9:2876-2884. [PMID: 30123356 PMCID: PMC6096380 DOI: 10.7150/jca.25351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: MicroRNAs, dysregulated in the circulation of esophageal squamous cell carcinoma (ESCC) patient, have been assumed to be with great potential in the diagnosis and prognosis of esophageal cancer. We aimed to review previous articles on ESCC. Methods: A search of electronic databases was performed before Nov 12, 2017. We summarized the identification of microRNA imbalance in the blood of ESCC compared with the healthy controls, with the objective to evaluate the efficiency of microRNAs in diagnosing and forecasting ESCC. Results: A total of 35 studies investigating plasma or serum microRNAs were included in the meta-analysis. Based on the consequences of the quality assessment of each study, the articles involved were appropriate for quantitative synthesis. For diagnostic meta-analysis. The overall pooled sensitivity, specificity, and area under the curve of circulating microRNA is 0.794 (95% CI: 0.765 - 0.820), 0.779 (95%CI: 0.746 - 0.808), 0.86 (95%CI: 0.82 - 0.88). The diagnostic value of each microRNA was calculated respectively. For prognostic meta-analysis, the overall pooled hazard ratios of higher microRNA expression in circulation was 1.34 (95% CI: 1.14-1.58), which could significantly predict poorer survival in ESCC. Conclusions: Circulating microRNAs distinguish patients with ESCC from healthy controls with high sensitivity and specificity, compared to other invasive currently used screening methods. Simultaneously, there was prognostic value for the prognosis of ESCC.
Collapse
Affiliation(s)
- Can Yao
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ying Fang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
16
|
Wang L, Wang M, Zhang M, Li X, Zhu Z, Wang H. Expression and significance of RRBP1 in esophageal carcinoma. Cancer Manag Res 2018; 10:1243-1249. [PMID: 29844703 PMCID: PMC5962310 DOI: 10.2147/cmar.s158013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study was to investigate the expression and clinical significance of RRBP1 in esophageal carcinoma. Materials and methods RRBP1 expression was detected in 120 esophageal carcinoma and matched adjacent normal tissues, and the relationship of RRBP1 with clinicopathological characteristics and prognosis was analyzed. Results RRBP1 was highly expressed in esophageal carcinoma tissues compared with matched adjacent normal tissues (P<0.05). Moreover, RRBP1 expression was associated with T stage, lymph node metastasis, and TNM stage in esophageal carcinoma (P<0.05). Survival analysis revealed that RRBP1, T stage, lymph node metastasis, and TNM stage were significantly associated with patients’ prognosis. Conclusion RRBP1 is highly expressed in esophageal carcinoma and can serve as a potential biomarker to predict patients’ prognosis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Endoscopic Professional, Cangzhou Central Hospital, Cangzhou, China
| | - Ming Wang
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| | - Mingyun Zhang
- Department of Endoscopic Professional, Cangzhou Central Hospital, Cangzhou, China
| | - Xingde Li
- Department of Endoscopic Professional, Cangzhou Central Hospital, Cangzhou, China
| | - Zhongcheng Zhu
- Department of Endoscopic Professional, Cangzhou Central Hospital, Cangzhou, China
| | - Haiyan Wang
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
17
|
Yan TB, Li C, Jiao GJ, Wu WL, Liu HC. TIMP-1 suppressed by miR-138 participates in endoplasmic reticulum stress-induced osteoblast apoptosis in osteoporosis. Free Radic Res 2018; 52:223-231. [PMID: 29291636 DOI: 10.1080/10715762.2017.1423070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the role of miR-138 in osteoporosis and its underlying mechanism. Hydrogen peroxide (H2O2) was used to induce osteoporotic injury of osteoblasts. The cell viability and apoptosis of MC3T3-E1 cells was assessed using MTT assay and flow cytometry, respectively. The cell transfection was carried out to modulate the expression levels of miR-138 and TIMP-1 in MC3T3-E1 cells. Luciferase reporter gene assay was performed to determine the interaction between miR-138 and TIMP-1 3'UTR. In the present study, H2O2 inhibited osteoblasts growth and induced intracellular endoplasmic reticulum (ER) stress accompanied by high expression of miR-138. We also confirmed that miR-138 promoted osteoblasts apoptosis in vitro and in vivo. MiR-138 was further indicated to inhibit osteoblast survival via negative regulating TIMP-1 expression. Moreover, the downregulated TIMP-1 also mediated the ER stress-induced apoptosis of osteoblasts. We confirmed that miR-138 and ER stress were induced in osteoporosis and then promoted the apoptosis of osteoblasts, at least in part, through TIMP-1.
Collapse
Affiliation(s)
- Ting-Bin Yan
- a Department of Orthopedics , Qilu Hospital of Shandong University , Jinan , China
| | - Ci Li
- a Department of Orthopedics , Qilu Hospital of Shandong University , Jinan , China
| | - Guang-Jun Jiao
- a Department of Orthopedics , Qilu Hospital of Shandong University , Jinan , China
| | - Wen-Liang Wu
- a Department of Orthopedics , Qilu Hospital of Shandong University , Jinan , China
| | - Hai-Chun Liu
- a Department of Orthopedics , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|