1
|
Huang X, Wang B, Sun D, Chen M, Xue X, Liu H, Zhou Y, Ma Z. Synthesis of substituted terpyridine nickel nitrate complexes and their inhibitory selectivity against cancer cell lines. J Inorg Biochem 2024; 256:112554. [PMID: 38613885 DOI: 10.1016/j.jinorgbio.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Six terpyridine‑nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.
Collapse
Affiliation(s)
- Xin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, 530006 Nanning, Guangxi, China.
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| |
Collapse
|
2
|
Ding J, Sun Y, Sulaiman Z, Li C, Cheng Z, Liu S. Comprehensive Analysis Reveals Distinct Immunological and Prognostic Characteristics of CD276/B7-H3 in Pan-Cancer. Int J Gen Med 2023; 16:367-391. [PMID: 36756390 PMCID: PMC9901449 DOI: 10.2147/ijgm.s395553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Background CD276 (also known as B7-H3), a newly discovered immunoregulatory protein that belongs to the B7 family, is a significant and attractive target for cancer immunotherapy. Existing evidence demonstrates its pivotal role in the tumorigenesis of some cancers. However, there still lacks a systematic and comprehensive pan-cancer analysis of the role of CD276 in tumor immunology and prognosis. Methods We explored and validated the mRNA and protein expression levels of CD276 in multiple tumors through public databases and clinical tissues specimens. The Univariate Cox regression analysis and Kaplan-Meier analysis were applied to assess the prognostic value of CD276. The correlation between CD276 expression and clinical characteristics and immunological features in diverse tumors was also explored. GSEA was performed to illuminate the biological function and involved pathways of CD276. Moreover, the CellMiner database was used to interpret the relationship between CD276 and multiple chemotherapeutic agents. CCK-8 assay was performed to validate the biological function of CD276 in vitro. Results In general, CD276 was differentially expressed between most tumor tissues and their corresponding normal tissues. Higher expression levels of CD276 were associated with poorer survival outcomes in most tumor cohorts from TCGA. There was a close correlation between CD276 expression and clinical features, the infiltration levels of specific immune cells, immune subtypes, TMB, MSI, MMR, recognized immunoregulatory genes and drug sensitivity across diverse human cancers. The scRNA-seq data analysis further revealed that CD276 was mainly expressed on the tumor infiltrating macrophages. Additionally, in vitro experiments showed that knockdown of CD276 inhibited the proliferation of ovarian cancer (OV) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) cell lines. Conclusion CD276 is a potent biomarker for predicting the prognosis and immunological features in some tumors, and it may play a critical role in the tumor immune microenvironment (TIME) through macrophage-associated signaling.
Collapse
Affiliation(s)
- Jinye Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zubaidan Sulaiman
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Correspondence: Zhongping Cheng; Shupeng Liu, Email ;
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Wang S, Chen L. Effects of RNA Modification "Writers" of GALNT2 on the Tumor Microenvironment in Cervical Squamous Cell Carcinoma. J Environ Pathol Toxicol Oncol 2022; 41:25-38. [PMID: 36374960 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cervical squamous cell carcinoma (CESC) is one of the most common causes of cancer-related deaths in women. RNA modification "writers" modulate and alter RNA molecular activity and have been implicated in the origin and development of cancer. We explored the effects of RNA modification writers on the tumor microenvironment in CESC and their prognostic value. RNA modification writers were altered at the genetic and transcriptional levels in CESC sample data downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. A principal component analysis (PCA) score model was established based on the genes screened by Cox regression analysis and random forest dimensionality reduction. A survival analysis of CESC patients revealed significant differences between patients with high and low scores. The gene set variation analysis method was used for a functional enrichment analysis. The relative abundance of immune cells in CESCs was quantified using the CIBERSORT algorithm. There were significant differences in multiple signaling pathways and immune cells between the patients with high and low scores. Based on Genomics of Drug Sensitivity in Cancer data, we analyzed the genetic mutations in CESCs and predicted the therapeutic effects of multiple anticancer drugs. Patients with high scores showed significant resistance. Finally, the N-acetylgalactosaminyltransferase 2 (GALNT2) was highly expressed in CESCs and was associated with multiple immune cells and the formation of the extracellular matrix. PCA score based on RNA modification writers is closely associated with immune infiltration in the tumor microenvironment and could be used as a reference for prognosis and medication in CESC patients.
Collapse
Affiliation(s)
- Shizhang Wang
- The Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha City, Hunan Province, China
| | - Lin Chen
- The Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Liu Y, Wang Y, Shen X, Chen C, Ni H, Sheng N, Hua M, Wu Y. Down-regulation of lncRNA PCGEM1 inhibits cervical carcinoma by modulating the miR-642a-5p/LGMN axis. Exp Mol Pathol 2020; 117:104561. [PMID: 33121976 DOI: 10.1016/j.yexmp.2020.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
LncRNA PCGEM1 (PCGEM1) has been reported to exert essential effects on the development and progress of various tumors, while the detailed effects and possible mechanisms of PCGEM1 in cervical carcinoma remain unknown. In the present study, PCGEM1 was over-expressed in cervical carcinoma cells as evidenced by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Knockdown of PCGEM1 significantly repressed proliferation, migration, and invasion, while induced G1 arrest in cervical carcinoma cells. In addition, PCGEM1 was predicted to target miR-642a-5p by bioinformatics software, which was further confirmed by luciferase reporter assay. Besides, RT-qPCR assay indicated that miR-642a-5p expression was decreased in cervical carcinoma cells and knockdown of PCGEM1 could accelerate miR-642a-5p expression. Moreover, inhibition of miR-642a-5p partly abolished the functions of PCGEM1 knockdown on proliferation, cell cycle, migration and invasion of cervical carcinoma cells. Furthermore, miR-642a-5p could bind to the 3'-UTR of LGMN, which was over-expressed in the cervical carcinoma cells. Suppression of LGMN partly restored the functions of miR-642a-5p inhibitor on proliferation, cell cycle distribution, migration and invasion in the cervical carcinoma cells treated with the PCGEM1 shRNA. Taken together, our data indicated that knockdown of PCGEM1 inhibited proliferation, migration and invasion in cervical carcinoma by modulating the miR-642a-5p/ LGMN axis.
Collapse
Affiliation(s)
- Yuanlin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Ye Wang
- Shanghai Hanghua International Shipping Agency Co. LTD, Shanghai, China
| | - Xiang Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huihua Ni
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Minhui Hua
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Wang J, Chen S. RACK1 promotes miR-302b/c/d-3p expression and inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma. Cancer Cell Int 2020; 20:385. [PMID: 32792866 PMCID: PMC7418423 DOI: 10.1186/s12935-020-01435-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC) is one of the main causes of cancer-related deaths in women worldwide. The present study was conducted with the main objective of determining the potential role of receptor for activated protein kinase C1 (RACK1) in CSCC through regulation of microRNA (miR)-302b/c/d-3p and Cyclin O (CCNO). Methods The expression of RACK1, miR-302b/c/d-3p and CCNO in CSCC tissues and cells was measured by RT-qPCR and Western blot analysis. The interaction among RACK1, miR-302b/c/d-3p, and CCNO was determined by dual luciferase reporter assay. Subsequently, effects of RACK1, miR-302b/c/d-3p and CCNO on CSCC cell cycle entry, proliferation and apoptosis were investigated with the use of flow cytometry, EdU, and TUNEL assays. Furthermore, mouse xenograft model of CSCC cells was established to verify the function of RACK1 in vivo. Results RACK1 and miR-302b/c/d-3p were down-regulated and CCNO was overexpressed in CSCC. CCNO was identified as the target of miR-302b/c/d-3p. Importantly, overexpressed miR-302b-3p, miR-302c-3p or miR-302d-3p or RACK1 enhanced the apoptosis and suppressed the proliferation of CSCC cells in vitro, while inhibiting tumor growth in vivo by targeting CCNO. Conclusions On all accounts, overexpressed RACK1 could dampen the progression of CSCC through miR-302b/c/d-3p-mediated CCNO inhibition.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| | - Shengcai Chen
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| |
Collapse
|