1
|
Chen P, Wu HY. Network pharmacology- and molecular docking-based exploration of the molecular mechanism underlying Jianpi Yiwei Recipe treatment of gastric cancer. World J Gastrointest Oncol 2024; 16:2988-2998. [PMID: 39072163 PMCID: PMC11271781 DOI: 10.4251/wjgo.v16.i7.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is widely used as an important complementary and alternative healthcare system for cancer treatment in Asian countries. Network pharmacology, which utilizes various database platforms and computer software to study the interactions between complex drug components in vivo, is particularly useful for studying the pharmacodynamic mechanisms of multi-pathway and multi-target Chinese medicines. AIM To explore the potential targets and function of Jianpi Yiwei Recipe treatment of gastric cancer (GC) through network pharmacology and molecular docking. METHODS Data on the components of Jianpi Yiwei Recipe (Radix Astragali, Radix Codonopsis, Agrimonia eupatoria, Atractylodes macrocephala Koidz., Poria cocos, stir-baked rhizoma dioscoreae, Amomum villosum Lour., fried Fructus Aurantii, pericarpium citri reticulatae, Rhizoma Pinelliae Preparata, and Radix Glycyrrhizae Preparata) were collected and screened by using the TCM systems pharmacology database and analysis platform (TCMSP). Then the targets of these compounds were predicted. GC-related targets were screened using the GeneCards database. Venn diagram was used to identify common targets. An active ingredient-core target interaction network and a protein-protein interaction (PPI) network were built. Moreover, we performed gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on the core targets and validated them by molecular docking. RESULTS TCMSP screening revealed 11 active components and 184 targets, whereas GeneCards found 10118 disease-related targets, with 180 shared targets between them. Topology analysis of the PPI network identified 38 targets, including ATK1, TP53, and tumor necrosis factor, as key targets for the treatment of GC by Jianpi Yiwei Recipe. Quercetin, naringenin, luteolin, etc., may be the main active components of Jianpi Yiwei Recipe. GO enrichment analysis identified 2809, 1218, and 553 functions related to biological process, molecular function, and cellular component, respectively. KEGG pathway enrichment analysis revealed 167 related pathways, mainly involved in cancer, endocrine resistance, and AGE-RAGE signaling in diabetic complication. Validation with molecular docking analysis showed docking of key active components with core targets. CONCLUSION Jianpi Yiwei Recipe plays a therapeutic role in GC through multiple components, targets, and pathways. These findings form a basis for follow-up exploration of Jianpi Yiwei Recipe in the treatment of GC.
Collapse
Affiliation(s)
- Peng Chen
- Traditional Chinese Medicine, The First Teaching Hospital of Tianjin University, Tianjin 300193, China
| | - Huan-Yu Wu
- Traditional Chinese Medicine, The First Teaching Hospital of Tianjin University, Tianjin 300193, China
| |
Collapse
|
2
|
Wen H, Liu XB, Zhu ZD, Jin S, Gao YJ, Tong Q, Li SB. TET2 Is Downregulated in Early Esophageal Squamous Cell Carcinoma and Promotes Esophageal Squamous Cell Malignant Behaviors. Dig Dis Sci 2024; 69:2462-2476. [PMID: 38653944 DOI: 10.1007/s10620-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To explore the expression of the ten eleven translocation (TET) 2 protein in early esophageal squamous cell carcinoma (EESCC), precancerous lesions, and cell lines and to evaluate the effect of TET2 on the functional behavior of EC109 esophageal cancer cells. METHODS Thirty-one samples of EESCC and precancerous lesions collected via endoscopic submucosal dissection at Taihe Hospital, Shiyan, from February 1, 2017, to February 1, 2019, were analyzed. The study involved evaluating TET2 expression levels in lesion tissue and adjacent normal epithelium, correlating these with clinical pathological features. Techniques including 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, cell scratch assays, flow cytometry for propidium iodide (PI) staining, Hoechst 333258/PI double staining, and nude mouse tumorigenesis experiments were employed to assess the effect of TET2 on the proliferation, migration, cell cycle, apoptosis, and tumorigenic ability of esophageal cancer cells. RESULTS TET2 expression was notably reduced in early esophageal cancer tissue and correlated with tumor invasion depth (P < 0.05). Overexpression of TET2 enhanced the proliferation and migration of esophageal cancer cells, increased the cell population in the G0 phase, decreased it in the S phase, and intensified cell necrosis (P < 0.05). There was a partial increase in tumorigenic ability (P = 0.087). CONCLUSION TET2 downregulation in ESCC potentially influences the necrosis, cell cycle, and tumorigenic ability of esophageal cancer cells, suggesting a role in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Hui Wen
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiao-Bo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Zhao-di Zhu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yuan-Jun Gao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
OSppc: A web server for online survival analysis using proteome of pan-cancers. J Proteomics 2023; 273:104810. [PMID: 36587732 DOI: 10.1016/j.jprot.2022.104810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Prognostic biomarker, as a feasible and objective indicator, is valuable in the assessment of cancer risk. With the development of high-throughput sequencing technology, the screening of prognostic biomarkers has become easy, but it is difficult to screen prognostic markers based on proteomic data. In this study we developed a tool named Online consensus Survival analysis web server based on Proteome of Pan-cancers, abbreviated as OSppc, to evaluate the prognostic values of protein biomarkers. >8000 cancer cases with proteomic data, transcriptomic data and clinical follow-up information were collected from TCGA and CPTAC. 14,038 proteins (including proteins and their phosphorylated forms) analyzed by reverse-phase protein arrays and mass spectrometry in 33 types of cancers were collected. In OSppc, three analysis modules are provided, including Survival Analysis, Differential Analysis and Correlation Analysis. Survival analysis module exhibits HR with 95% CI and KM curves with log-rank p value of protein and mRNA levels of input genes. Differential analysis module shows the box plots of protein expression levels in different tissues. Correlation analysis module provides scatter plot with pearson's and spearman's correlation coefficient of the protein and its corresponding mRNA. OSppc can be accessed at http://bioinfo.henu.edu.cn/Protein/OSppc.html. SIGNIFICANCE: OSppc can analyze the association between protein, mRNA and prognosis, the correlation between proteome data and gene expression profiles, the differential expression of proteome data between subgroups such as normal and cancer as well. OSppc is registration-free and very valuable to evaluate the prognostic potency of protein of interests. OSppc is very valuable for researchers and clinicians to screen, develop and validate potential protein prognostic biomarkers in pan-cancers, and offers the opportunities to investigate the clinical important functional genes and therapeutic targets of cancers.
Collapse
|
4
|
Li Y, Ji Y, Shen L, Yin X, Huang T, Deng B, Guo H, Wu Y, Chen Y. Clinical efficacy of combination therapy of an immune checkpoint inhibitor with taxane plus platinum versus an immune checkpoint inhibitor with fluorouracil plus platinum in the first-line treatment of patients with locally advanced, metastatic, or recurrent esophageal squamous cell carcinoma. Front Oncol 2022; 12:1015302. [PMID: 36605427 PMCID: PMC9808083 DOI: 10.3389/fonc.2022.1015302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chemotherapy combined with immune checkpoints inhibitors (ICIs) has been established as a standard treatment for locally advanced, metastatic, or recurrent esophageal squamous cell cancer (ESCC). However, the optimal chemotherapy regimen in combination therapy is still unclear. PURPOSE To investigate the efficacy and adverse events of the fluorouracil plus platinum (FP) and taxane plus platinum (TP) regimens in ESCC patients receiving chemo-immunotherapy, we conducted this systematic review and meta-analysis. METHODS Potentially eligible studies were searched from Medline, Embase, Web of Science, and the Cochrane Library. Pooled rates of overall response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events were compared between ICIs+TP and ICIs+FP groups in ESCC patients receiving first-line chemo-immunotherapy. RESULTS A total of 10 clinical trials were included, of which 5 were randomized controlled trials. Compared with chemotherapy alone, chemo-immunotherapy significantly improved the OS of ESCC patients (pooled HR=0.69; 95% CI, 0.63-0.76; p<0.01). Pooled analysis revealed that ESCC patients receiving ICIs+TP had significantly higher ORR, DCR, PFS, and OS rates than those receiving ICIs+FP. No statistically significant difference in the pooled incidence rate of treatment-related death was found (2.3% vs 0.9%, P=0.08). ICIs+TP had significantly higher rates of hematologic toxicity but lower rates of gastrointestinal toxicity than ICIs+FP. CONCLUSIONS Based on the current data, the first-line treatment using ICIs+TP may be a better option than ICIs+FP in advanced, metastatic, or recurrent ESCC.
Collapse
Affiliation(s)
- Ying Li
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanyan Ji
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lin Shen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xudong Yin
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tianyu Huang
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Guo
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunjiang Wu
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong Chen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Ye Y, Yang W, Ruan X, Xu L, Cheng W, Zhao M, Wang X, Chen X, Cai D, Li G, Wang Y, Yan F, Lu X, Jiang L. Metabolism-associated molecular classification of gastric adenocarcinoma. Front Oncol 2022; 12:1024985. [PMID: 36465405 PMCID: PMC9709214 DOI: 10.3389/fonc.2022.1024985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 12/22/2024] Open
Abstract
Most gastric cancers (GC) are adenocarcinomas, whereas GC is a highly heterogeneous disease due to its molecular heterogeneity. However, traditional morphology-based classification systems, including the WHO classification and Lauren's classification, have limited utility in guiding clinical treatment. We performed nonnegative matrix factorization (NMF) clustering based on 2752 metabolism-associated genes. We characterized each of the subclasses from multiple angles, including subclass-associated metabolism signatures, immune cell infiltration, clinic10al characteristics, drug sensitivity, and pathway enrichment. As a result, four subtypes were identified: immune suppressed, metabolic, mesenchymal/immune exhausted and hypermutated. The subtypes exhibited significant prognostic differences, which suggests that the metabolism-related classification has clinical significance. Metabolic and hypermutated subtypes have better overall survival, and the hypermutated subtype is likely to be sensitive to anti-PD-1 immunotherapy. In addition, our work showed a strong connection with previously established classifications, especially Lei's subtype, to which we provided an interpretation based on the immune cell infiltration perspective, deepening the understanding of GC heterogeneity. Finally, a 120-gene classifier was generated to determine the GC classification, and a 10-gene prognostic model was developed for survival time prediction.
Collapse
Affiliation(s)
- Yuqing Ye
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenyun Yang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinjia Ruan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Xu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengmeng Zhao
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyi Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Daren Cai
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guanjie Li
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhang Wang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Liyun Jiang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
7
|
Song S, Zhou J, Li Y, Liu J, Li J, Shu P. Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus against gastric cancer. Sci Rep 2022; 12:9401. [PMID: 35672352 PMCID: PMC9174187 DOI: 10.1038/s41598-022-13223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
To investigate the mechanism of the Aucklandiae Radix–Amomi Fructus (AR–AF) herb pair in treating gastric cancer (GC) by using network pharmacology and experimental verification. Using the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP), the major active components and their corresponding targets were estimated and screened out. Using Cytoscape 3.7.2 software, a visual network was established using the active components of AR–AF and the targets of GC. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of the target enrichment were performed. AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The mRNA and protein expression levels of the hub targets were analyzed by the Oncomine, GEPIA, HPA databases and TIMER online tool, and the predicted targets were verified by qRT–PCR in vitro. Eremanthin, cynaropicrin, and aceteugenol were identified as vital active compounds, and AKT1, MAPK3, IL6, MAPK1, as well as EGFR were considered as the major targets. These targets exerted therapeutic effects on GC by regulating the cAMP signaling pathway, and PI3K-Akt signaling pathway. Molecular docking revealed that these active compounds and targets showed good binding interactions. The validation in different databases showed that most of the results were consistent with this paper. The experimental results confirmed that eremanthin could inhibit the proliferation of AGS by reducing the mRNA expression of hub targets. As predicted by network pharmacology and validated by the experimental results, AR–AF exerts antitumor effects through multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of GC.
Collapse
Affiliation(s)
- Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jiayu Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jingzhan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China. .,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China. .,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Li H, Guo J, Cheng G, Wei Y, Liu S, Qi Y, Wang G, Xiao R, Qi W, Qiu W. Identification and Validation of SNP-Containing Genes With Prognostic Value in Gastric Cancer via Integrated Bioinformatics Analysis. Front Oncol 2021; 11:564296. [PMID: 33987081 PMCID: PMC8112818 DOI: 10.3389/fonc.2021.564296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is one of the most common malignancies worldwide. Although the diagnosis and treatment of this disease have substantially improved in recent years, the five-year survival rate of gastric cancer is still low due to local recurrence and distant metastasis. An in-depth study of the molecular pathogenesis of gastric cancer and related prognostic markers will help improve the quality of life and prognosis of patients with this disease. The purpose of this study was to identify and verify key SNPs in genes with prognostic value for gastric cancer. Methods SNP-related data from gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database, and the functions and pathways of the mutated genes were analyzed using DAVID software. A protein-protein interaction (PPI) network was constructed using the STRING database and visualized by Cytoscape software, and molecular complex detection (MCODE) was used to screen the PPI network to extract important mutated genes. Ten hub genes were identified using cytoHubba, and the expression levels and the prognostic value of the central genes were determined by UALCAN and Kaplan-Meier Plotter. Finally, quantitative PCR and Western blotting were used to verify the expression of the hub genes in gastric cancer cells. Results From the database, 945 genes with mutations in more than 25 samples were identified. The PPI network had 360 nodes and 1616 edges. Finally, cytoHubba identified six key genes (TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4), and their expression levels were closely related to the survival rate of gastric cancer patients. Conclusion Our results indicate that TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4 may be key genes for the development and prognosis of gastric cancer. Our research provides an important bioinformatics foundation and related theoretical foundation for further exploring the molecular pathogenesis of gastric cancer and evaluating the prognosis of patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Medcine, Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guang Cheng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yucheng Wei
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihai Liu
- Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaoyue Qi
- Department of Medcine, Qingdao University, Qingdao, China
| | - Gongjun Wang
- Department of Medcine, Qingdao University, Qingdao, China
| | - Ruoxi Xiao
- Department of Medcine, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Pectasides E, Chatzidakis I, Kotoula V, Koliou GA, Papadopoulou K, Giannoulatou E, Giannouzakos VG, Bobos M, Papavasileiou C, Chrisafi S, Florou A, Pectasides D, Fountzilas G. Prognostic Biomarkers in Early-stage Gastric Adenocarcinoma Treated With Adjuvant Chemoradiotherapy. Cancer Genomics Proteomics 2020; 17:277-290. [PMID: 32345669 DOI: 10.21873/cgp.20188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Early-stage gastric cancer has a high risk of recurrence, despite trimodality therapy with surgery, chemotherapy and radiation. To improve patient selection for adjuvant chemoradiotherapy, we evaluated the prognostic significance of immunohistochemical and genetic biomarkers in patients with resected gastric adenocarcinoma. PATIENTS AND METHODS Tumors from 119 patients were subjected to immunohistochemistry for 12 protein biomarkers, as well as next-generation sequencing. Clinical and biomarker data were available for 91 patients. RESULTS EBV-positive tumors and tumors with mutations had higher intratumoral CD8 tumor-infiltrating lymphocyte density (p=0.009 and p=0.017, respectively). PIK3CA mutations were correlated with VEGFA overexpression (p=0.042), while KRAS mutations and HER2 expression were mutually exclusive (p=0.036). PTEN expression univariately confirmed longer overall survival (HR=0.27; p=0.046), while there was a trend between the presence of KRAS mutations and inferior disease-free and overall survival. CONCLUSION PTEN protein expression and KRAS mutations may predict disease outcome in early-stage gastric cancer. These results need to be further validated in larger cohorts.
Collapse
Affiliation(s)
- Eirini Pectasides
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A.
| | - Ioannis Chatzidakis
- Second Department of Internal Medicine, Propaedeutic, Oncology Section, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Giannoulatou
- Bioinformatics and Systems Medicine Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,The University of New South Wales, Kensington, NSW, Australia
| | - Vasilios G Giannouzakos
- Department of Radiation Therapy, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Papavasileiou
- Surgical Department, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Florou
- Second Department of Internal Medicine, Propaedeutic, Oncology Section, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Dimitrios Pectasides
- Second Department of Internal Medicine, Propaedeutic, Oncology Section, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece.,German Oncology Center, Limassol, Cyprus
| |
Collapse
|
10
|
Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3860213. [PMID: 32964029 PMCID: PMC7486643 DOI: 10.1155/2020/3860213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
This study was aimed at elucidating the potential mechanisms of quercetin in the treatment of gastric cancer (GC). A network pharmacology approach was used to analyze the targets and pathways of quercetin in treating GC. The predicted targets of quercetin against GC were obtained through database mining, and the correlation of these targets with GC was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, the protein-protein interaction (PPI) network was constructed, and overall survival (OS) analysis of hub targets was performed using the Kaplan–Meier Plotter online tool. Finally, the mechanism was further analyzed via molecular docking of quercetin with the hub targets. Thirty-six quercetin-related genes were identified, 15 of which overlapped with GC-related targets. These targets were further mapped to 319 GO biological process terms and 10 remarkable pathways. In the PPI network analysis, six hub targets were identified, including AKT1, EGFR, SRC, IGF1R, PTK2, and KDR. The high expression of these targets was related to poor OS in GC patients. Molecular docking analysis confirmed that quercetin can bind to these hub targets. In conclusion, this study provided a novel approach to reveal the therapeutic mechanisms of quercetin on GC, which will ease the future clinical application of quercetin in the treatment of GC.
Collapse
|
11
|
George S, Lucero Y, Torres JP, Lagomarcino AJ, O'Ryan M. Gastric Damage and Cancer-Associated Biomarkers in Helicobacter pylori-Infected Children. Front Microbiol 2020; 11:90. [PMID: 32117120 PMCID: PMC7029740 DOI: 10.3389/fmicb.2020.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is well-known to be involved in gastric carcinogenesis, associated with deregulation of cell proliferation and epigenetic changes in cancer-related genes. H. pylori infection is largely acquired during childhood, persisting long-term in about half of infected individuals, a subset of whom will go on to develop peptic ulcer disease and eventually gastric cancer, however, the sequence of events leading to disease is not completely understood. Knowledge on carcinogenesis and gastric damage-related biomarkers is abundant in adult populations, but scarce in children. We performed an extensive literature review focusing on gastric cancer related biomarkers identified in adult populations, which have been detected in children infected with H. pylori. Biomarkers were related to expression levels (RNA or protein) and/or methylation levels (DNA) in gastric tissue or blood of infected children as compared to non-infected controls. In this review, we identified 37 biomarkers of which 24 are over expressed, three are under expressed, and ten genes are significantly hypermethylated in H. pylori-infected children compared to healthy controls in at least 1 study. Only four of these biomarkers (pepsinogen I, pepsinogen II, gastrin, and SLC5A8) have been studied in asymptomatically infected children. Importantly, 13 of these biomarkers (β-catenin, C-MYC, GATA-4, DAPK1, CXCL13, DC-SIGN, TIMP3, EGFR, GRIN2B, PIM2, SLC5A8, CDH1, and VCAM-1.) are consistently deregulated in infected children and in adults with gastric cancer. Future studies should be designed to determine the clinical significance of these changes in infection-associated biomarkers in children and their persistence over time. The effect of eradication therapy over these biomarkers in children if proven significant, could lead to modifications in treatment guidelines for younger populations, and eventually promote the development of preventive strategies, such as vaccination, in the near future.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Anne J Lagomarcino
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (IMII), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Raimondi A, Nichetti F, Peverelli G, Di Bartolomeo M, De Braud F, Pietrantonio F. Genomic markers of resistance to targeted treatments in gastric cancer: potential new treatment strategies. Pharmacogenomics 2018; 19:1047-1068. [PMID: 30041572 DOI: 10.2217/pgs-2018-0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a highly heterogeneous disease, displaying a complex genomic landscape and an unfavorable outcome with standard therapies. Based on distinctive genomic alterations, novel targeted agents have been developed with the aim of personalizing treatments and improving patient outcome. However, a subgroup of patients is primarily treatment-resistant, and even in the initially sensitive population, secondary resistance emerges, thus limiting therapeutic benefit. In this review, we summarize the clinical data about standard targeted agents in gastric cancer, specifically anti-HER2 treatments and antivascular therapies. We also illustrate the available evidence regarding molecular mechanisms of resistance to these agents and we discuss potential strategies for new targeted treatments that could overcome such resistance.
Collapse
Affiliation(s)
- Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Peverelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology & Hemato-oncology, University of Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology & Hemato-oncology, University of Milan, Italy
| |
Collapse
|