1
|
Vimalraj S, Sekaran S. Exploring the potential of MiRNAs as predictive biomarkers for radioresistance in nasopharyngeal carcinoma. Oral Oncol 2023; 145:106521. [PMID: 37467682 DOI: 10.1016/j.oraloncology.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Xu LN, Liu SL, Yang Y, Shu L, Sun Y. CircLASP1 silence strengthens the therapeutic effects of MK-2206 on nasopharyngeal cancer through upregulating miR-625. Cancer Sci 2023; 114:2123-2138. [PMID: 36644819 PMCID: PMC10154807 DOI: 10.1111/cas.15725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/17/2023] Open
Abstract
Therapeutic effects of MK-2206 are largely limited due to the complexity of the pathogenesis of nasopharyngeal cancer (NPC). Here, we aimed to investigate whether and how circLASP1 is involved in the therapeutic effects of MK-2206 on NPC. We showed circLASP1 was increased while miR-625 was decreased in NPC tissues and cell lines. CircLASP1 silence strengthened the therapeutic effects of MK-2206 via suppressing NPC cell proliferation and inducing autophagy and apoptosis in vitro. In mechanism analyses, we found that circLASP1 indirectly released AKT by directly binding to miR-625 in NPC cells, and miR-625 acted as a tumor suppressor in NPC and activated cell autophagy through inhibiting the AKT/mTOR pathway. Most importantly, knockdown of circLASP1 was revealed to enhance the therapeutic effects of MK-2206 on NPC in vivo. Our results suggest that the circLASP1/miR-625 axis is involved the therapeutic effects of MK-2206 on NPC by regulating autophagy, proliferation, and apoptosis through the AKT/mTOR pathway. miR-625 is involved in NPC tumorigenesis.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Si-Le Liu
- Department of Laboratory, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Shu
- Department of Breast Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Chen YC, Hsiao CC, Wu CC, Chao TY, Leung SY, Chang YP, Tseng CC, Lee CP, Hsu PY, Wang TY, Wang PW, Chen TW, Lin MC. Next generation sequencing reveals miR-431-3p/miR-1303 as immune-regulating microRNAs for active tuberculosis. J Infect 2022; 85:519-533. [DOI: 10.1016/j.jinf.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022]
|
5
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
6
|
You B, Zhang P, Gu M, Yin H, Fan Y, Yao H, Pan S, Xie H, Cheng T, Liu H, You Y, Liu J. Let-7i-5p promotes a malignant phenotype in nasopharyngeal carcinoma via inhibiting tumor-suppressive autophagy. Cancer Lett 2022; 531:14-26. [DOI: 10.1016/j.canlet.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
|
7
|
Long X, You G, Wu Q, Zhou Y, Xiao Y, Yu F, Deng S, Mo R, Song F, Huang J, Tian M. HomeoboxC6 affects the apoptosis of human vascular endothelial cells and is involved in atherosclerosis. J Cell Physiol 2021; 236:1913-1925. [PMID: 32740941 DOI: 10.1002/jcp.29974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Apoptosis of vascular endothelial cells (VECs) is highly important in the occurrence and development of atherosclerosis (AS). HomeboxC6 (HOXC6) is expressed in higher levels in multiple malignant tissues, and it influences the malignant biological behavior of the cancer cells. However, the effects of HOXC6 on AS and the apoptosis of VECs have not been fully elucidated. In this study, we demonstrated that HOXC6 expression was increased in aortic wall of AS rats and peripheral blood monocytes of patients with coronary heart disease. Furthermore, it was uncovered that BAX expression was upregulated, while BCL-2 expression was downregulated in the aortic wall of AS rats. The apoptosis of human VECs (HVECs) cultured normally or treated with oxidized low-density lipoprotein in vitro was decreased after transfection with HOXC6-siRNA. Moreover, the results of Western blot analysis unveiled that the expressions of proapoptotic proteins, such as BAX, caspase-3, cleaved-caspase-3, and caspase-9 were reduced, while the expression of antiapoptotic protein, BCL-2, was elevated. Meanwhile, mRNA and protein expressions of phospholipase C beta (PLCβ) were decreased, the phosphorylation levels of protein kinase C zeta (PKCζ) and nuclear transcription factor-κB-p65 (NF-κBp65) and the membrane translocation of PKCζ were reduced as well. Besides, the expression of interleukin-18 (IL-18) protein was downregulated. However, after overexpression of HOXC6, the opposite trends of the abovementioned indices were observed. Furthermore, the inhibition of apoptosis induced by HOXC6-siRNA was reversed by lysophosphatidylcholine, an activator of PKCζ. Taken together, our results indicated that HOXC6 can promote the apoptosis of HVECs and may be involved in the occurrence and development of AS, which may be partially associated with the activation of PLCβ/PKCζ/NF-κBp65/IL-18 signaling pathway.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Ganhua You
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Rui Mo
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Yun Z, Wang Y, Feng W, Zang J, Zhang D, Gao Y. Overexpression of microRNA-185 alleviates intervertebral disc degeneration through inactivation of the Wnt/ β-catenin signaling pathway and downregulation of Galectin-3. Mol Pain 2021; 16:1744806920902559. [PMID: 32090685 PMCID: PMC7040930 DOI: 10.1177/1744806920902559] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yuhang Wang
- Day Care Unit, The First Hospital of Jilin University, Changchun, P. R. China
| | - Wei Feng
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, P. R. China
| | - Junting Zang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, P. R. China
| | - Daguang Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yuhang Gao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
9
|
Zhu Q, Zhang Q, Gu M, Zhang K, Xia T, Zhang S, Chen W, Yin H, Yao H, Fan Y, Pan S, Xie H, Liu H, Cheng T, Zhang P, Zhang T, You B, You Y. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma. Autophagy 2020; 17:1667-1683. [PMID: 32627648 PMCID: PMC8354606 DOI: 10.1080/15548627.2020.1781368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dysregulated microRNAs (miRNAs) are involved in carcinoma progression, metastasis, and poor prognosis. We demonstrated that in nasopharyngeal carcinoma (NPC), transactivated MIR106A-5p promotes a malignant phenotype by functioning as a macroautophagy/autophagy suppressor by targeting BTG3 (BTG anti-proliferation factor 3) and activating autophagy-regulating MAPK signaling. MIR106A-5p expression was markedly increased in NPC cases based on quantitative real-time PCR, miRNA microarray, and TCGA database analysis findings. Moreover, MIR106A-5p was correlated with advanced stage, recurrence, and poor clinical outcomes in NPC patients. In addition to three-dimensional cell culture assays, zebrafish and BALB/c mouse tumor models revealed that overexpressed MIR106A-5p targeted BTG3 and accelerated the NPC malignant phenotype by inhibiting autophagy. BTG3 promoted autophagy, and its expression was correlated with poor prognosis in NPC. Attenuation of autophagy, mediated by the MIR106A-5p-BTG3 axis, occurred because of MAPK pathway activation. MIR106A-5p overexpression in NPC was due to increased transactivation by EGR1 and SOX9. Our findings may lead to novel insights into the pathogenesis of NPC. Abbreviations: ACTB: actin beta; ATG: autophagy-related; ATG5: autophagy related 5; BLI: bioluminescence; BTG3: BTG anti-proliferation factor 3; CASP3: caspase 3; ChIP: chromatin immunoprecipitation; CQ: chloroquine; Ct: threshold cycle; DAPI: 4ʹ,6-diamidino-2-phenylindole; DiL: 1,1ʹ-dioctadecyl-3,3,3ʹ,3ʹ-tetramethylindocarbocyanine perchlorate; EBSS: Earle’s balanced salt solution; EGR1: early growth response 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: Gene Expression Omnibus; GFP: green fluorescent protein; IF: immunofluorescence; IHC: immunohistochemistry; ISH: in situ hybridization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MIR106A-5p: microRNA 106a-5p; miRNAs: microRNAs; MKI67: marker of proliferation ki-67; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NPC: nasopharyngeal carcinoma; qRT-PCR: quantitative real-time PCR; siRNA: small interfering RNA; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TCGA: The Cancer Genome Atlas; WB: western blot.
Collapse
Affiliation(s)
- Qingwen Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Yao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yue Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huiting Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
Zhao Y, Wang P, Wu Q. miR-1278 sensitizes nasopharyngeal carcinoma cells to cisplatin and suppresses autophagy via targeting ATG2B. Mol Cell Probes 2020; 53:101597. [PMID: 32407879 DOI: 10.1016/j.mcp.2020.101597] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Chemoresistance to cisplatin (DDP) has become a dominating obstacle to the successful treatment of nasopharyngeal carcinoma (NPC). Recently, accumulating data support the tenet that microRNAs (miRNAs) function as new crucial regulators of diverse biological processes, including chemoresistance. In this study, the miRNA expression profiles in NPC were first analyzed using miRNA microarray dataset. miR-1278 was identified as the most decreased miRNA in NPC tissues. We then validated that miR-1278 was significantly down-regulated in NPC tissues and cell lines. Moreover, decreased miR-1278 was strongly associated with worse overall survival and poor chemotherapy response. Gain-of-function experiments showed that overexpression of miR-1278 dramatically sensitized NPC cells to DDP and reduced autophagy. Mechanistically, ATG2B was identified as a target gene of miR-1278. More importantly, ATG2B overexpression reversed miR-1278-induced suppression of autophagy and DDP resistance. Taken together, our results suggested that miR-1278 inhibited the DDP resistance of NPC cells and autophagy through targeting ATG2B. miR-1278 might function as a novel therapeutic target in NPC treatment.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200011, China; Ear Institute, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Peihua Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200011, China; Ear Institute, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China.
| | - Qingwei Wu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200011, China; Ear Institute, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China.
| |
Collapse
|
11
|
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, Rao S, Tan S, Xia L, Lin J, Oyang L, Tang Y, Liang J, Luo X, Liao Q, Wang H, Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:3976-3985. [PMID: 32328201 PMCID: PMC7171507 DOI: 10.7150/jca.42734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck in Southeast Asia and southern China. Although the comprehensive treatment based on intensity-modulated radiation therapy improves outcomes, the five-year survival rate of NPC patients is low, and the recurrence remains high. Radiotherapy resistance is the main cause of poor prognosis in NPC patients. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs regulating various biological functions in eukaryotes. These miRNAs can regulate the development and progression of nasopharyngeal carcinoma by affecting the proliferation, apoptosis, movement, invasion and metastasis of NPC cells. The abnormal expression of miRNAs is closely related to radiotherapy sensitivity and prognosis of NPC patients, which can affect the transmission of related signaling pathways by regulating the expression of tumor suppressor genes and / or oncogenes, and therefore participate in radiotherapy resistance in nasopharyngeal carcinoma. Here, we review the mechanisms by which miRNAs may be involved in the radiotherapy resistance of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Pin Yi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
12
|
Kang Y, Cui Y, Tan M. MicroRNA-212 suppresses cell proliferation in nasopharyngeal carcinoma by targeting ELF3. Oncol Lett 2020; 19:2902-2908. [PMID: 32218845 PMCID: PMC7068658 DOI: 10.3892/ol.2020.11401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck that is prevalent in China. The present study investigated the molecular mechanisms of microRNA-212 (miR-212) and E74-like factor 3 (ELF3) in NPC cell lines and tissues. Using reverse transcription-quantitative PCR, the present study identified that miR-212 expression was downregulated in NPC cell lines and tissues. Furthermore, an elevated expression level of miR-212 was revealed to inhibit NPC cell proliferation, as determined using a cell counting kit-8 assay in vitro. ELF3 was identified as a direct target of miR-212 in NPC cells by a luciferase reporter assay. Additionally, the expression levels of miR-212 and ELF3 were negatively correlated in NPC tissues. The expression levels of ELF3 and miR-212 were associated with metastasis and TNM stage in patients with NPC. In summary, the present study indicated that miR-212 was downregulated in NPC and suppressed cell proliferation. This suggested that the miR-212/ELF3 axis may serve as a novel target for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Yaojie Kang
- Department of Otolaryngology-Head and Neck Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yanfei Cui
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Ming Tan
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
13
|
Effect of colony‐stimulating factor‐1 receptor overexpression on the growth of nasopharyngeal carcinoma xenografts in nude mice and its mechanism of action. PRECISION RADIATION ONCOLOGY 2020. [DOI: 10.1002/pro6.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Fu Y, Li Y, Wang X, Li F, Lu Y. Overexpression of miR-425-5p is associated with poor prognosis and tumor progression in non-small cell lung cancer. Cancer Biomark 2020; 27:147-156. [PMID: 31771046 DOI: 10.3233/cbm-190782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yongxing Fu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Yuanyuan Li
- Department of Medical Image, Yidu Central Hospital of Weifang, Weifang, Shandong, China
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xiaoyan Wang
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Feng Li
- Department of Emergency Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yugang Lu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhu J, Zhang X, Gao W, Hu H, Wang X, Hao D. lncRNA/circRNA‑miRNA‑mRNA ceRNA network in lumbar intervertebral disc degeneration. Mol Med Rep 2019; 20:3160-3174. [PMID: 31432173 PMCID: PMC6755180 DOI: 10.3892/mmr.2019.10569] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence has indicated that noncoding RNAs are involved in intervertebral disc degeneration (IDD); however, the competing endogenous RNA (ceRNA)‑mediated regulatory mechanisms in IDD remain rarely reported. The present study aimed to comprehensively investigate the alterations in expression levels of circular RNA (circRNA), long noncoding RNA (lncRNA), microRNA (miRNA/miR) and mRNA in the nucleus pulposus (NP) of patients with IDD. In addition, crucial lncRNA/circRNA‑miRNA‑mRNA ceRNA interaction axes were screened using the GSE67567 microarray dataset obtained from the Gene Expression Omnibus database. After data preprocessing, differentially expressed circRNAs (DECs), lncRNAs (DELs), miRNAs (DEMs) or genes (DEGs) between IDD and normal controls were identified using the Linear Models for Microarray data method. A protein‑protein interaction (PPI) network was constructed for DEGs based on protein databases, followed by module analysis. The ceRNA network was constructed based on the interaction between miRNAs and mRNAs, and lncRNAs/circRNAs and miRNAs. The underlying functions of mRNAs were predicted using the Database for Annotation, Visualization and Integrated Discovery database. The present study identified 636 DECs, 115 DELs, 84 DEMs and 1,040 DEGs between patients with IDD and control individuals. PPI network analysis demonstrated that Fos proto‑oncogene, AP‑1 transcription factor subunit (FOS), mitogen‑activated protein kinase 1 (MAPK1), hypoxia inducible factor 1 subunit α (HIF1A) and transforming growth factor β1 (TGFB1) were hub genes and enriched in modules. Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1)/hsa_circRNA_102348‑hsa‑miR‑185‑5p‑TGFB1/FOS, MALAT1‑hsa‑miR‑155‑5p‑HIF1A, hsa_circRNA_102399‑hsa‑miR‑302a‑3p‑HIF1A, MALAT1‑hsa‑miR‑519d‑3p‑MAPK1 and hsa_circRNA_100086‑hsa‑miR‑509‑3p‑MAPK1 ceRNA axes were obtained by constructing the ceRNA networks. In conclusion, these identified ceRNA interaction axes may be crucial targets for the treatment of IDD.
Collapse
Affiliation(s)
- Jinwen Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Wenjie Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaodong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
16
|
Wang Z, Zhu Z, Lin Z, Luo Y, Liang Z, Zhang C, Chen J, Peng P. miR-429 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by downregulation of TLN1. Cancer Cell Int 2019; 19:115. [PMID: 31068760 PMCID: PMC6492405 DOI: 10.1186/s12935-019-0831-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background miR-429 and TLN1 have been shown to affect the biological behaviours of many carcinomas. However, their effects in nasopharyngeal carcinoma (NPC) are not yet clear. Here, we investigated their regulatory relationships and effects on NPC cells. Methods TargetScan was used to predict the regulatory relationships of miR-429 and TLN1 in NPC cells. Then, Western blotting and quantitative real-time PCR (qPCR) were performed to examine TLN1 levels, and qPCR was used to determine miR-429 levels in NPC cell lines with different metastatic characteristics (5-8F, CNE-2, CNE-1, 6-10B and NP69), to investigate whether TLN1 and miR-429 are correlated with the metastatic characteristics of these cells. Next, we upregulated or downregulated miR-429 in 5-8F and 6-10B cells, which have different tumourigenicity and transferability, and examined TLN1 expression by western blotting and qPCR after transfection. QPCR was also performed to confirm successful transfection of miR-429 mimic into 5-8F and 6-10B cells. Dual luciferase reporter gene assay was performed to investigate whether miR-429 regulates TLN1 by binding to its 3′UTR. After transfection, Cell Counting Kit-8 (CCK8) and IncuCyte were used to examine the proliferation of these cells, and wound-healing assay, Transwell migration assay, and invasion assays were performed to investigate the changes in migration and invasion after transfection. Results Western blotting and qPCR analyses showed that the protein level of TLN1 was negatively correlated with miR-429 in NPC cell lines (P < 0.05), while the mRNA level showed no relation with miR429 expression (P > 0.05). In addition, cells with high transferability showed high TLN1 expression at the protein level, while miR429 expression showed the opposite trend (P < 0.05), but there were no differences at the mRNA level between the different cell lines. Overexpression of miR429 in 5-8F and 6-10B cells was accompanied by downregulation of TLN1 at the protein level (P < 0.05), while there were no significant differences at the mRNA level (P > 0.05). In addition, transferability, proliferation, and invasion were downregulated by miR429 overexpression (P < 0.05). However, dual-luciferase reporter gene assay indicated that TLN1 was not a direct target of miR-429. Conclusion This study showed that miR-429 functions as a tumour suppressor in NPC by downregulation of TLN1, although the relationship is not direct.
Collapse
Affiliation(s)
- Zhihui Wang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhiquan Zhu
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zhong Lin
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Youli Luo
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Zibin Liang
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Caibin Zhang
- 2Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Jianxu Chen
- 3Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| | - Peijian Peng
- 1Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong China
| |
Collapse
|
17
|
Li B, Huang Q, Wei GH. The Role of HOX Transcription Factors in Cancer Predisposition and Progression. Cancers (Basel) 2019; 11:cancers11040528. [PMID: 31013831 PMCID: PMC6520925 DOI: 10.3390/cancers11040528] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Homeobox (HOX) transcription factors, encoded by a subset of homeodomain superfamily genes, play pivotal roles in many aspects of cellular physiology, embryonic development, and tissue homeostasis. Findings over the past decade have revealed that mutations in HOX genes can lead to increased cancer predisposition, and HOX genes might mediate the effect of many other cancer susceptibility factors by recognizing or executing altered genetic information. Remarkably, several lines of evidence highlight the interplays between HOX transcription factors and cancer risk loci discovered by genome-wide association studies, thereby gaining molecular and biological insight into cancer etiology. In addition, deregulated HOX gene expression impacts various aspects of cancer progression, including tumor angiogenesis, cell autophagy, proliferation, apoptosis, tumor cell migration, and metabolism. In this review, we will discuss the fundamental roles of HOX genes in cancer susceptibility and progression, highlighting multiple molecular mechanisms of HOX involved gene misregulation, as well as their potential implications in clinical practice.
Collapse
Affiliation(s)
- Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
| |
Collapse
|
18
|
Zhuo X, Zhou W, Ye H, Li D, Chang A, Wu Y, Zhou Q. Screening of key miRNAs and evaluation of their diagnostic and prognostic values in nasopharyngeal carcinoma. Oncol Lett 2019; 17:5803-5810. [PMID: 31186807 DOI: 10.3892/ol.2019.10231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence has revealed the importance of microRNA (miRNA/miR) in cancer genesis and progression. The aim of the current study was to identify the key miRNAs involved in the onset and development of nasopharyngeal carcinoma (NPC) and to further evaluate their diagnostic and prognostic values. Microarray data were obtained and analyzed to screen differentially expressed miRNAs (DEMs) between patients with NPC and healthy controls. The target genes of the DEMs were predicted and their possible functions were evaluated. The diagnostic and prognostic values of the DEMs were subsequently investigated. A total of 4 DEMs, including miR-18a, miR-135b, miR-204 and miR-497, were identified. Gene Ontology (GO) and pathway enrichment analysis revealed that the target genes were enriched in a number of GO terms and signaling pathways. The results demonstrated that the selected DEMs may present potential diagnostic factors for NPC. In addition, miR-18a [Hazard ratio (HR), 3.405; 95% confidence interval (CI), 1.334-8.693] and miR-135b (HR, 2.482; 95% CI, 1.014-6.076) may serve prognostic roles for patients with NPC. In summary, the present study identified 4 miRNAs that may be involved in the genesis and development of NPC. In addition, miR-18a and miR-135b may present useful prognostic markers for patients with NPC. Future in vitro and in vivo investigations are warranted to substantiate the results obtained in the current study.
Collapse
Affiliation(s)
- Xianlu Zhuo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dairong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Qi Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| |
Collapse
|
19
|
Gu L, Shi Y, Xu W, Ji Y. PPARβ/δ Agonist GW501516 Inhibits Tumorigenesis and Promotes Apoptosis of the Undifferentiated Nasopharyngeal Carcinoma C666-1 Cells by Regulating miR-206. Oncol Res 2019; 27:923-933. [PMID: 30982495 PMCID: PMC7848406 DOI: 10.3727/096504019x15518706875814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In previous investigations, we reported that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activation by GW501516 inhibits proliferation and promotes apoptosis in the undifferentiated C666-1 nasopharyngeal carcinoma (NPC) cells by modulating caspase-dependent apoptotic pathway. In the present study, the mechanism by which GW501516 induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Among the assayed miRNAs that were involved in regulating the expression of antiapoptotic protein Bcl-2, miR-206 was increased significantly and specifically by GW501516 in C666-1 cells at both the in vitro level and at the in vivo xenograft samples. The induction on miR-206 expression caused by GW501516 was capable of being antagonized by the PPARβ/δ antagonist GSK3787 and AMPK antagonist dorsomorphin in C666-1 cells. GW501516's suppression on the growth and apoptosis of C666-1 cells was found to be dependent on the presence of miR-206. miR-206 overexpression resulted in suppressed proliferation and colony formation ability, and further triggered increased apoptosis in C666-1 cells in a caspase-dependent manner. The expression of cleaved caspase 3 and caspase 9, and the ratio of Bax to Bcl-2 were elevated remarkably by miR-206. Consistent with the in vitro result, miR-206 was corroborated to suppress the ectopic NPC xenograft tumorigenesis that derived from the C666-1 cells in BALB/c nu/nu mice. Taken together, the current data demonstrated that miR-206 plays a critical role in the direct apoptosis-promoting effect induced by GW501516 in C666-1 cells. Furthermore, the emphasized tumor-suppressive role of miR-206 in the C666-1 cells indicates that it has the potential to provide a new therapeutic approach for the undifferentiated NPC.
Collapse
Affiliation(s)
- Linglan Gu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Yi Shi
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Weimin Xu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Yangyang Ji
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| |
Collapse
|
20
|
Ji Y, Wang M, Li X, Cui F. The Long Noncoding RNA NEAT1 Targets miR-34a-5p and Drives Nasopharyngeal Carcinoma Progression via Wnt/β-Catenin Signaling. Yonsei Med J 2019; 60:336-345. [PMID: 30900419 PMCID: PMC6433575 DOI: 10.3349/ymj.2019.60.4.336] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been deemed an oncogene in many human cancers. However, the underlying mechanism of NEAT1 in nasopharyngeal carcinoma (NPC) progression remains largely unclear. MATERIALS AND METHODS Quantitative real-time PCR assay was performed to assess the expression of NEAT1 and miR-34a-5p in NPC tissues and cells. Western blot analysis was used to observe cell epithelial to mesenchymal transition (EMT) and the activation of Wnt/β-catenin signaling in 5-8F cells. MiRNA directly interacting with NEAT1 were verified by dual-luciferase reporter assay and RNA immunoprecipitation. Cell proliferation ability was determined by CCK-8 assay, and cell migration and invasion capacities were assessed by transwell assays. An animal model was used to investigate the regulatory effect of NEAT1 on tumor growth in vivo. RESULTS Our data revealed that NEAT1 is upregulated, while miR-34a-5p is downregulated in NPC tissues and cell lines. NEAT1 knockdown repressed tumor growth in vitro and in vivo. Additionally, we discovered that NEAT1 directly binds to miR-34a-5p and suppresses miR-34a-5p expression. Moreover, NEAT1 knockdown exerted suppression effects on cell proliferation, migration, invasion, and EMT by miR-34a-5p. NEAT1 knockdown blocked Wnt/β-catenin signaling via miR-34a-5p. CONCLUSION Our study demonstrated that NEAT1 targets miR-34a-5p at least partly to drive NPC progression by regulating Wnt/β-catenin signaling, suggesting a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Yuqing Ji
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Man Wang
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Xueshen Li
- Ear-Nose-Throat Department, Xingtai People's Hospital, Xingtai, China
| | - Fusheng Cui
- CT/MRI Department, Xingtai People's Hospital, Xingtai, China.
| |
Collapse
|
21
|
Zhang Q, Liu H, Yang J. Regulation of TGF-β1 on PI3KC3 and its role in hypertension-induced vascular injuries. Exp Ther Med 2018; 17:1717-1727. [PMID: 30783440 PMCID: PMC6364233 DOI: 10.3892/etm.2018.7128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of transforming growth factor (TGF)-β1/phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3) in the peripheral blood in patients with hypertension. A total of 28 patients with primary hypertension and 20 healthy control subjects were included. Peripheral blood samples were collected. The mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell counting kit-8 assay, Transwell chamber assay and flow cytometry were performed to detect the cell proliferation, migration ability and cellular apoptosis, respectively. Laser scanning confocal microscopy was used to detect the intracellular autophagosomes. The expression of TGF-β1 was significantly elevated, whereas the expression of PI3KC3 was significantly downregulated in the patients with hypertension compared with controls. There was negative correlation between the TGF-β1 and PI3KC3 expression. Following treatment with TGF-β1, the protein expression of PI3KC3 was significantly decreased in human umbilical vein endothelial cells (HUVECs), and the autophagic activity was significantly decreased. Furthermore, following the treatment of TGF-β1 the proliferation of HUVECs was significantly reduced in the HUVECs, the hypoxia-induced apoptosis rates were significantly elevated and the number of penetrating cells were significantly declined (indicating declined migration ability). However, the overexpression of PI3KC3 significantly ameliorated the proliferation, migration ability and hypoxia tolerance of TGF-β1-treated HUVECs. In conclusion, the present results indicated that TGF-β1 expression was elevated in the peripheral blood in hypertensive patients and negatively correlated with the PI3KC3 expression; and that TGF-β1 regulates the PI3KC3 signaling pathway to inhibit the autophagic activity of vascular endothelial cells, and regulate the cell proliferation, migration and anti-apoptosis ability, thus aggregating the endothelial cell injuries in hypertension. The results of the current study revealed a novel mechanism of TGF-β1 in the regulation of endothelial cell injury in hypertension, which may provide a potential target for disease therapy.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Hu Liu
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Jun Yang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|