1
|
You GR, Cheng AJ, Shen EYL, Fan KH, Huang YF, Huang YC, Chang KP, Chang JT. MiR-630 Promotes Radioresistance by Induction of Anti-Apoptotic Effect via Nrf2-GPX2 Molecular Axis in Head-Neck Cancer. Cells 2023; 12:2853. [PMID: 38132173 PMCID: PMC10741482 DOI: 10.3390/cells12242853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck cancer (HNC) ranks among the top ten prevalent cancers worldwide. Radiotherapy stands as a pivotal treatment component for HNC; however, radioresistance in cancerous cells often leads to local recurrence, becoming a substantial factor in treatment failure. MicroRNAs (miRNAs) are compact, non-coding RNAs that regulate gene expression by targeting mRNAs to inhibit protein translation. Although several studies have indicated that the dysregulation of miRNAs is intricately linked with malignant transformation, understanding this molecular family's role in radioresistance remains limited. This study determined the role of miR-630 in regulating radiosensitivity in HNC. We discovered that miR-630 functions as an oncomiR, marked by its overexpression in HNC patients, correlating with a poorer prognosis. We further delineated the malignant function of miR-630 in HNC cells. While it had a minimal impact on cell growth, the miR-630 contributed to radioresistance in HNC cells. This result was supported by decreased cellular apoptosis and caspase enzyme activities. Moreover, miR-630 overexpression mitigated irradiation-induced DNA damage, evidenced by the reduced levels of the γ-H2AX histone protein, a marker for double-strand DNA breaks. Mechanistically, the overexpression of miR-630 decreased the cellular ROS levels and initiated Nrf2 transcriptional activity, resulting in the upregulation of the antioxidant enzyme GPX2. Thus, this study elucidates that miR-630 augments radioresistance by inducing an anti-apoptotic effect via the Nrf2-GPX2 molecular axis in HNC. The modulation of miR-630 may serve as a novel radiosensitizing target for HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (A.-J.C.)
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (A.-J.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (E.Y.-L.S.); (K.-H.F.)
| | - Eric Yi-Liang Shen
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (E.Y.-L.S.); (K.-H.F.)
| | - Kang-Hsing Fan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (E.Y.-L.S.); (K.-H.F.)
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen Huang
- Department of Oral and Maxillofacial Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, LinKou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (E.Y.-L.S.); (K.-H.F.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
2
|
Kadkhoda S, Ghafouri-Fard S. The importance of miRNA-630 in human diseases with an especial focus on cancers. Cancer Cell Int 2022; 22:105. [PMID: 35248081 PMCID: PMC8897855 DOI: 10.1186/s12935-022-02531-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
miR-630 is encoded by MIR630 gene (NC_000015.10) on 15q24.1. This miRNA is mostly associated with cytokine signaling in immune system. Several neoplastic as well as non-neoplastic conditions have been linked with dysregulation of miR-630. It is an oncogenic miRNA in renal cell carcinoma, multiple myeloma, colorectal cancer, acute lymphoblastic leukemia, ovarian cancer and prostate cancer. On the other hand, it is a putative tumor suppressor miRNA in lung, cervical, breast, thyroid and esophageal tissues. In a number of other tissues, data regarding the role of miR-630 in the carcinogenesis is conflicting. Expression levels of miR-630 can be used as markers for prediction of cancer course. Moreover, miR-630 can influence response to chemoradiotherapy. This miRNA is also involved in the pathoetiology of IgA nephropathy, obstructive sleep apnea, age-related nuclear cataract and vitiligo. In the present review, we discuss the role of miR-630 in these conditions.
Collapse
|
3
|
Zhou J, Zhang B, Zhang X, Wang C, Xu Y. Identification of a 3-miRNA Signature Associated With the Prediction of Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2022; 11:823603. [PMID: 35155213 PMCID: PMC8828644 DOI: 10.3389/fonc.2021.823603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor caused by an infection of the epithelial cells of the nasopharynx, which is highly metastatic and aggressive. Due to the deep anatomical site and atypical early symptoms, the majority of NPC patients are diagnosed at terminal stages. There is growing evidence that microRNAs offer options for early detection, accurate diagnosis, and prediction of malignancy treatment response. Therefore, the purpose of this article was to identify microRNAs that predict the prognosis of patients with NPC by integrating biological information analysis. In this study, we utilized the GSE36682 dataset rooted in the Gene Expression Omnibus (GEO) data bank, including 62 cases of NPC tissues and six cases of non-cancerous tissues. The miRNAs were subjected to weighted gene co-expression network analysis, and hub miRNAs were screened for differentially upregulated miRNAs from modules highly correlated with tumor progression. We took a lot of time to calculate the risk scores of miRNA markers for 62 NPC patients, and incidentally combined the clinical survival information of patients to finally identify the three key miRNAs, and then divided the patients into low- and high-risk groups. Kaplan-Meier curve analysis revealed that the overall survival of patients in the high-risk group was obviously shorter than that of the low-risk group. Subsequently, the target genes of the three miRNAs were predicted and analyzed for functional enrichment. In summary, a prognostic predictive risk model based on three miRNA profiles may increase prognostic predictive value and provide reference information for the precise treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jinhui Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bo Zhang
- Teaching and Research Section of Otolaryngology, Hubei University of Science and Technology, Xianning, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chengyu Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
4
|
Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer. Mol Biol Rep 2021; 49:1501-1511. [PMID: 34837627 DOI: 10.1007/s11033-021-06954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
Collapse
Affiliation(s)
- Sethu Thakachy Subha
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jun Wei Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasni Idayu Saidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Chen M, Xu WM, Wang GY, Hou YX, Tian TT, Li YQ, Qi HJ, Zhou M, Kong WJ, Lu MX. Genetic variants of cell cycle pathway genes are associated with head and neck squamous cell carcinoma in the Chinese population. Carcinogenesis 2021; 42:1337-1346. [PMID: 34643214 DOI: 10.1093/carcin/bgab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Genetic alterations in the cell cycle pathway are common in head and neck squamous cell carcinoma (HNSCC). We identified four novel HNSCC susceptibility loci (CDKN1C rs452338, CDK4 rs2072052, E2F2 rs3820028 and E2F2 rs2075993) through a two-stage matched case-control study. There was a combined effect among the four single nucleotide polymorphisms (SNPs), as the number of risk genotypes increased, the risk of HNSCC displayed an increasing trend (Ptrend < 0.001). And there were multiplicative interactions between rs452338 and rs2072052, rs2072052 and rs3820028, rs2072052 and rs2075993. Functional bioinformatics analysis and dual-luciferase reporter assay revealed that E2F2 rs2075993 T>C reduced the stability of E2F2 3'-UTR secondary structure and affected the binding of E2F2 to miR-940, which was up-regulated in HNSCC tumor tissues (P = 2.9e-8) and was correlated with poor overall survival of HNSCC (HR = 1.39, 95% CI = 1.02-1.90). In vitro assays, we discovered that the expression of miR-940 was regulated by METTL3, and miR-940 promoted the proliferation, migration and invasion, and inhibited the senescence and autophagy of tumor cells. In terms of mechanism, compared with rs2075993 allele T, we found that the protective variant rs2075993 allele C interfered with the translational inhibition of E2F2 by miR-940, resulting in increased expression of E2F2 protein, which further reduced the proliferation, migration, invasion, and increased the senescence of tumor cells.
Collapse
Affiliation(s)
- Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Mao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gui-Yang Wang
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Wuhan Pulmonary Hospital, Tuberculosis Control and Management Office, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Ya-Xuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206,China
| | - Yu-Qing Li
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Medical Insurance Office, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Hong-Jiao Qi
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei-Xia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Identification of a Two-MicroRNA Signature in Plasma as a Novel Biomarker for Very Early Diagnosis of Breast Cancer. Cancers (Basel) 2021; 13:cancers13112848. [PMID: 34200463 PMCID: PMC8201361 DOI: 10.3390/cancers13112848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Breast cancer diagnosis at the initial stage of the disease considerably improves prognosis and survival rates. This retrospective study aimed to develop and validate a plasma microRNA signature as a non-invasive biomarker for early-stage breast cancer diagnosis. We confirmed in a testing cohort of 54 BC patients and 89 healthy volunteers the value of a signature based on miR-30b and miR-99a levels in plasma samples for stage I breast cancer detection. Furthermore, our results were blindly validated in a second cohort of 74 breast cancer and 74 healthy samples. The proposed microRNA signature presented high value as a fast, cost-effective, and non-invasive biomarker for early-stage breast cancer detection, which will lead to a better prognosis for breast cancer patients. Abstract The early diagnosis of breast cancer is essential to improve patients’ survival rate. In this context, microRNAs have been described as potential diagnostic biomarkers for breast cancer. Particularly, circulating microRNAs have a strong value as non-invasive biomarkers. Herein, we assessed the potential of a microRNA signature based on miR-30b-5p and miR-99a-5p levels in plasma as a diagnostic biomarker for breast cancer. This two-microRNA signature was constructed by Principal Component Analysis and its prognostic value was assessed in a discovery cohort and blindly validated in a second cohort from an independent institution. ROC curve analysis and biomarker performance parameter evaluation demonstrated that our proposed signature presents a high value as a non-invasive biomarker for very early detection of breast cancer. In addition, pathway enrichment analysis identified three of the well-known pathways involved in cancer as targets of the two microRNAs.
Collapse
|
7
|
Li H, Li Y, Tian D, Zhang J, Duan S. miR-940 is a new biomarker with tumor diagnostic and prognostic value. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:53-66. [PMID: 34168918 PMCID: PMC8192490 DOI: 10.1016/j.omtn.2021.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-940 is a microRNA located on chromosome 16p13.3, which has varying degrees of expression imbalance in many diseases. It binds to the 3′ untranslated region (UTR) and affects the transcription or post-transcriptional regulation of target protein-coding genes. For a diversity of cellular processes, including cell proliferation, migration, invasion, apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, and osteogenic differentiation, miR-940 can affect them not only by regulating protein-coding genes but also long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in pathways. Intriguingly, miR-940 participates in four pathways that affect cancer development, including the Wnt/β-catenin pathway, mitogen-activated protein kinase (MAPK) pathway, PD-1 pathway, and phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Importantly, the expression of miR-940 is intimately correlated with the diagnosis and prognosis of tumor patients, as well as to the efficacy of tumor chemotherapy drugs. In conclusion, our main purpose is to outline the expression of miR-940 in various diseases and the molecular biological and cytological functions of target genes in order to reveal its potential diagnostic and prognostic value as well as its predictive value of drug efficacy.
Collapse
Affiliation(s)
- Hongxiang Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongmei Tian
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaqian Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Cha S, Seo EH, Lee SH, Kim KS, Oh CS, Moon JS, Kim JK. MicroRNA Expression in Extracellular Vesicles from Nasal Lavage Fluid in Chronic Rhinosinusitis. Biomedicines 2021; 9:biomedicines9050471. [PMID: 33925835 PMCID: PMC8145239 DOI: 10.3390/biomedicines9050471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles of endocytic origin released by cells and found in human bodily fluids. EVs contain both mRNA and microRNA (miRNA), which can be shuttled between cells, indicating their role in cell communication. This study investigated whether nasal secretions contain EVs and whether these EVs contain RNA. EVs were isolated from nasal lavage fluid (NLF) using sequential centrifugation. EVs were characterized and EV sizes were identified by transmission electron microscopy (TEM). In addition, EV miRNA expression was different in the chronic rhinosinusitis without nasal polyp (CRSsNP) and chronic rhinosinusitis with nasal polyp (CRSwNP) groups. The Kyoto encyclopedia gene and genome database (KEGG) database was used to identify pathways associated with changed miRNAs in each analysis group. Twelve miRNAs were differentially expressed in NLF-EVs of CRS patients versus HCs. In addition, eight miRNAs were differentially expressed in NLF-EVs of CRSwNP versus CRSsNP patients. The mucin-type O-glycan biosynthesis was a high-ranked predicted pathway in CRS patients versus healthy controls (HCs), and the Transforming growth factor beta (TGF-β) signaling pathway was a high-ranked predicted pathway in CRSwNP versus CRSsNP patients. We demonstrated the presence of and differences in NLF-EV miRNAs between CRS patients and HCs. These findings open up a broad and novel area of research on CRS pathophysiology as driven by miRNA cell communication.
Collapse
Affiliation(s)
- Seungbin Cha
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
| | - Eun-Hye Seo
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Seung Hyun Lee
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chung-Sik Oh
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea;
| | - Jin Kook Kim
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Departments of Otorhinolaryngology-Head & Neck Surgery, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7662
| |
Collapse
|
9
|
Zheng W, Ye W, Wu Z, Huang X, Xu Y, Chen Q, Lin Z, Chen Y, Bai P, Chen C. Identification of potential plasma biomarkers in early-stage nasopharyngeal carcinoma-derived exosomes based on RNA sequencing. Cancer Cell Int 2021; 21:185. [PMID: 33789676 PMCID: PMC8011216 DOI: 10.1186/s12935-021-01881-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early diagnosis of nasopharyngeal carcinoma (NPC) is vital to improve the prognosis of these patients. However, early diagnosis of NPC is typically challenging. Therefore, we explored the pathogenetic roles and associated mechanisms of exosomes in plasma of patients with early-stage NPC. METHODS Exosomes in plasma were extracted by ultra-high-speed centrifugation. Western blot and transmission electron microscopy (TEM) were used to verify the purity of exosomes. The sequencing data (6 plasma samples from healthy volunteers vs. 6 NPC plasma samples) were analyzed by principal component analysis (PCA), DESeq2, gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and TargetScan. The differentially expressed miRNAs (DEmiRNAs) were obtained from the dataset (GSE118720) downloaded from the Gene Expression Omnibus (GEO) repository. Additionally, the datasets downloaded from the GEO database (GSE12452, GSE13597, GSE53819, GSE64634) were used to predict the target genes and functions of hsa-miR-1301-3p. qPCR was applied to verify the differences in the expressions of hsa-miR-1301-3p between 10 normal plasma and 10 NPC plasma samples. RESULTS Western blot, TEM, and Nanoparticle Tracking Analysis showed adequate purity of the extracted exosomes. RNA-seq analysis revealed 21 upregulated miRNAs, and 10 downregulated miRNAs in plasma exosomes of early-stage NPC patients. GO analysis showed that the target genes of DEmiRNAs were mainly enriched in DNA synthesis and transcription regulation. KEGG analysis revealed that DEmiRNAs were mainly enriched in PI3K-Akt and MAPK signaling pathways. Moreover, the expression of hsa-mir-1301-3p was verified to be significantly upregulated in enlarged samples of plasma exosomes. CONCLUSIONS We identified several DEmiRNAs extracted from tumor-derived exosomes between normal plasma and early-stage NPC plasma. Bioinformatics analyses indicated that these DEmiRNAs may be related to NPC development. Our study may provide novel insights into underlying biomarkers and mechanisms of plasma exosomes in early-stage NPC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
| | - Wangzhong Ye
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zijie Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xinyi Huang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
| | - Qinyan Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhizhong Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
| | - Yanyu Chen
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan, China
| | - Penggang Bai
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China
| | - Chuanben Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Li J, Wang C, Meng Q, Hu Z, Hu M, Zhang M. MicroRNAs in urine as diagnostic biomarkers for multiple myeloma. Int J Lab Hematol 2020; 43:227-234. [PMID: 33068078 DOI: 10.1111/ijlh.13367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is a hematological malignancy. It is of great clinical significance to screen microRNAs (miRNAs) in urine as noninvasive diagnostic biomarkers for MM. METHODS Urinary miRNAs in MM were performed by Agilent Bioanalyzer 2100 and verified by quantitative real-time PCR (qRT-PCR). Receiver operator characteristic (ROC) was used to evaluate the diagnostic value of abnormal miRNAs for MM. Progression-free survival (PFS) of MM was calculated by Kaplan-Meier. RESULTS In microarray analysis, twelve down-regulated miRNAs dysregulated in MM. The expression levels of miR-134-5p, miR-6500-5p, miR-548q, and miR-548y were validated. These miRNAs were significantly lower in MM (P < .05), but there was no significant difference between newly diagnosed, relapse, and remission group of MM (P> .05). ROC curve analysis showed that the sensitivity of miR-134-5p, miR-6500-5p, miR-548q, and miR-548y to MM was 91.7%, 100%, 100%, and 91.7%, and the specificity was 66.7%, 75.0%, 75.0%, and 100%, respectively. The four miRNAs were negatively correlated with the total urinary light chain (r = -0.427 P = .030, r = -0.461 P = .018, r = -0.469 P = .016, r = -0.493 P = .011). In addition, miR-134-5p, miR-6500-5p, and miR-548q were positively correlated with serum ALB (r = 0.518 P = .006, r = 0.400 P = .039,r = 0.492 P = .009). The expression level of miRNAs had no significant influence on PFS in MM patients (P> .05). CONCLUSION The results show that miR-134-5p, miR-6500-5p, miR-548q, and miR-548y are potential noninvasive diagnostic biomarkers for MM.
Collapse
Affiliation(s)
- Jia Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Chengbin Wang
- Medical Laboratory Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Meng
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Zhiying Hu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Mei Hu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China.,Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
11
|
Liu L, Wang H, Yan C, Tao S. An Integrated Analysis of mRNAs and miRNAs Microarray Profiles to Screen miRNA Signatures Involved in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820956998. [PMID: 32985354 PMCID: PMC7534087 DOI: 10.1177/1533033820956998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aim to identify several microRNAs (miRNAs/miRs)-messenger RNAs (mRNAs) biomarkers correlated to nasopharyngeal carcinoma (NPC) based on an integrated analysis of miRNA and mRNAs microarray expression profiles. METHODS The available mRNA and miRNA microarray datasets were retrieved from Gene Expression Omnibus (GEO) database according to pre-determined screening criteria. Differentially expressed miRNA and mRNAs (DEmiRNAs and DEmRNAs) were extracted between NPC and noncancerous nasopharyngeal tissues. The target genes of DEmiRNAs were predicted with miRTarBase followed by the construction of DEmiRNAs-target DEmRNAs network, and functional analyses were performed. The DEmiRNAs expressions were validated and the performance of these DEmiRNAs was assessed by the area under the curve (AUC) values. Finally, the correlations between DEmiRNAs and specific clinical factors were analyzed. RESULTS There were 1140 interaction pairs (including let-7d/f-MYC/HMGA2 and miR-452-ITGA9) in DEmiRNAs-target DEmRNAs network. The GO annotation analysis showed that several genes such as MYC, HMGA2 and ITGA9 primarily participated in cellular process. KEGG analysis showed that these targets were associated with cell cycle and cancer-related pathways. Down-regulated let-7(-d and -f) and up-regulated miR-452 were verified in datasets. The AUC values of these 3 DEmiRNAs (let-7d, let-7-f and miR-452) was 0.803, 0.835 and 0.735, respectively. Besides, miR-452 was significantly related to survival rate of NPC patients. CONCLUSION The findings implied let-7d/f-MYC/HMGA2 and miR-452-ITGA9 might be promising targets for the detection and treatment of NPC.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hailing Wang
- Department of Diagnostic and Therapeutic Ultrasonography, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaohui Yan
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Shudong Tao
- Department of Otorhinolaryngology & Head and Neck Surgery, The Third Central Hospital of Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
12
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Wang S, Claret FX, Wu W. MicroRNAs as Therapeutic Targets in Nasopharyngeal Carcinoma. Front Oncol 2019; 9:756. [PMID: 31456943 PMCID: PMC6700302 DOI: 10.3389/fonc.2019.00756] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin that is prone to local invasion and early distant metastasis. Although concurrent chemotherapy and radiotherapy improves the 5-year survival outcomes, persistent or recurrent disease still occurs. Therefore, novel therapeutic targets are needed for NPC patients. MicroRNAs (miRNAs) play important roles in normal cell homeostasis, and dysregulations of miRNA expression have been implicated in human cancers. In NPC, studies have revealed that miRNAs are dysregulated and involved in tumorigenesis, metastasis, invasion, resistance to chemo- and radiotherapy, and other disease- and treatment-related processes. The advantage of miRNA-based treatment approaches is that miRNAs can concurrently target multiple effectors of pathways involved in tumor cell differentiation and proliferation. Thus, miRNA-based cancer treatments, alone or combined with standard chemotherapy and/or radiotherapy, hold promise to improve treatment response and cure rates. In this review, we will summarize the dysregulation of miRNAs in NPC initiation, progression, and treatment as well as NPC-related signaling pathways, and we will discuss the potential applications of miRNAs as biomarkers and therapeutic targets in NPC patients. We conclude that miRNAs might be potential promising therapeutic targets in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Sumei Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - François-Xavier Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States
| | - Wanyin Wu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Yin W, Shi L, Mao Y. MicroRNA-449b-5p suppresses cell proliferation, migration and invasion by targeting TPD52 in nasopharyngeal carcinoma. J Biochem 2019; 166:433-440. [PMID: 31350893 DOI: 10.1093/jb/mvz057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Nasopharyngeal carcinoma (NPC) is an important type of head and neck malignant cancer with geographical distribution. MicroRNA-449b-5p (miR-449b-5p) is related to the development of various cancers, while its function in NPC remains unknown. The present study aimed to investigate the role and target gene of miR-449b-5p in NPC. Expressions of miR-449b-5p in NPC cell lines and clinical tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was determined by MTT and colony formation assays. Migration and invasion abilities after different treatment were evaluated by wound healing and Transwell assays, respectively. Dual-luciferase reporter assay was performed to explore the relationship between miR-449b-5p and tumour protein D52 (TPD52). TPD52 expression was determined by qRT-PCR and western blot assay. miR-449b-5p was significantly downregulated in NPC cell lines and clinical tissues than the matched control. Overexpression of miR-449b-5p inhibited proliferation, migration and invasion of NPC cells. Dual-luciferase reporter assay indicated that miR-449b-5p directly targeted TPD52. Furthermore, shRNA-mediated downregulation of TPD52 rectified the promotion of cell migration and invasion by miR-449b-5p inhibition. In conclusion, the present study suggests that miR-449b-5p, as a novel tumour-suppressive miRNA against NPC, inhibits proliferation, migration and invasion of NPC cells via inhibiting TPD52 expression.
Collapse
Affiliation(s)
- Wei Yin
- Department of Radiotherapy, Hangzhou Cancer Hospital, No. 34 Yanguanxiang, Hangzhou, China
| | - Lei Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jingwuweiqi Road #324, Jinan, China
| | - Yanjiao Mao
- Department of Radiotherapy, Hangzhou Cancer Hospital, No. 34 Yanguanxiang, Hangzhou, China
| |
Collapse
|
15
|
Banfai K, Ernszt D, Pap A, Bai P, Garai K, Belharazem D, Pongracz JE, Kvell K. "Beige" Cross Talk Between the Immune System and Metabolism. Front Endocrinol (Lausanne) 2019; 10:369. [PMID: 31275241 PMCID: PMC6591453 DOI: 10.3389/fendo.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Bai
- Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
- MTA-DE Lendulet Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Djeda Belharazem
- Department of Pathology, University Hospital of Mannheim, Mannheim, Germany
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- *Correspondence: Krisztian Kvell
| |
Collapse
|