1
|
Kadeerbieke B, Wu L, Zhang YM. The role of lncRNA H19/Hmox1 axis regulating ferroptosis in anthracycline-induced cardiotoxicity. Drug Chem Toxicol 2025:1-12. [PMID: 40432412 DOI: 10.1080/01480545.2025.2503946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
This study investigates the molecular mechanisms underlying anthracyclines (ANT)-induced cardiotoxicity, with a specific focus on ferroptosis regulated by the long non-coding RNA (lncRNA) H19/heme oxygenase-1 (Hmox1) signaling axis. A retrospective analysis was performed on 50 breast cancer patients who developed ANT-associated cardiac dysfunction. Clinical assessments included measurements of left ventricular ejection fraction (LVEF) and serum markers, such as cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and serum iron levels. Serum analysis revealed a marked downregulation of lncRNA H19 and upregulation of Hmox1, both significantly correlated with impaired cardiac function and disrupted iron homeostasis. To further elucidate the mechanism, an Epirubicin (EPI)-induced injury model in HL-1 cardiomyocytes was established. EPI exposure led to suppression of lncRNA H19, upregulation of Hmox1, and induction of apoptosis and ferroptotic cell death. RNA-seq analysis identified potential downstream targets linking lncRNA H19 to iron metabolism via Hmox1 modulation. Functional assays demonstrated that overexpression of lncRNA H19 mitigated EPI-induced ferroptosis, while enforced expression of Hmox1 reversed these protective effects. Collectively, these findings identify the lncRNA H19/Hmox1 axis as a critical regulator of ferroptosis in ANT-induced cardiotoxicity and suggest it as a potential therapeutic target for mitigating cardiac injury in breast cancer patients undergoing anthracycline chemotherapy.
Collapse
Affiliation(s)
- Bayan Kadeerbieke
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Li Wu
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Yuan-Ming Zhang
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| |
Collapse
|
2
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ghasemian M, Zehtabi M, Dari MAG, Pour FK, Tabesh GA, Moramezi F, Jafari RM, Barati M, Uddin S, Farzaneh M. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers. BMC Cancer 2024; 24:4. [PMID: 38166752 PMCID: PMC10763168 DOI: 10.1186/s12885-023-11743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Barati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 22602, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Application value of circulating LncRNA in diagnosis, treatment, and prognosis of breast cancer. Funct Integr Genomics 2023; 23:61. [PMID: 36792760 DOI: 10.1007/s10142-023-00983-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer is the malignant tumor with the highest incidence in women worldwide. It is highly heterogeneous, has a high incidence of drug resistance, recurrence, and metastasis, and is one of the malignant tumors with the highest mortality rate. The early diagnosis, treatment monitoring, and prognosis assessment of breast cancer are the key factors affecting the survival of patients. However, due to the lack of specific biomarkers, breast cancer is still an essential factor affecting women's quality of life and physical and mental health. Long non-coding RNA can regulate various genes and different signaling pathways and plays an essential role in the occurrence and development of tumors. Recent studies have found that the abnormal expression of circulating long non-coding RNA in serum, saliva, and other biological body fluids plays a significant role in early diagnosis, pathological classification, stage, therapeutic effect monitoring, and prognosis evaluation of breast cancer. This article will review the potential application value of circulating lncRNA in breast cancer.
Collapse
|
6
|
Fu Y, Yang Q, Yang H, Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front Mol Biosci 2023; 10:1162463. [PMID: 37122564 PMCID: PMC10134903 DOI: 10.3389/fmolb.2023.1162463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Triple negative breast cancer is distinguished by its high malignancy, aggressive invasion, rapid progression, easy recurrence, and distant metastases. Additionally, it has a poor prognosis, a high mortality, and is unresponsive to conventional endocrine and targeted therapy, making it a challenging problem for breast cancer treatment and a hotspot for scientific research. Recent research has revealed that certain miRNA can directly or indirectly affect the occurrence, progress and recurrence of TNBC. Their expression levels have a significant impact on TNBC diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for TNBC diagnosis and prognosis. This article summarizes the progress of miRNA research in TNBC, discusses their roles in the occurrence, invasion, metastasis, prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for TNBC by interfering with miRNA expression levels.
Collapse
Affiliation(s)
- Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| |
Collapse
|
7
|
Wang G, Lin X, Han H, Zhang H, Li X, Feng M, Jiang C. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered 2022; 13:11440-11455. [PMID: 35506168 PMCID: PMC9275997 DOI: 10.1080/21655979.2022.2065947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant cancer with severely poor survival, and the cells continue to thrive during hypoxia and toxic stress through autophagy. To validate the oncogenic role of long noncoding RNA H19 in GBM progression and examine whether autophagy and/or miR-491-5p participate in the process. The expression of H19 and autophagy-related genes in GBM and healthy control tissues was assessed via quantitative polymerase chain reaction. In addition, cell viability, proliferation, apoptosis and autophagy were respectively determined via cell counting kit-8 assay, clone formation assay, flow cytometry, western blotting and green fluorescent protein-microtubule-associated protein 1 light chain 3 alpha fluorescence analysis in vitro. Furthermore, a rescue assay was performed using rapamycin or miR-491-5p antagomir to examine the role of autophagy or miR-491-5p in H19-mediated regulation of proliferation and apoptosis. RNA pull-down and dual-luciferase reporter assays were employed to analyze the interaction between H19 and miR-491-5p. Additionally, tumor growth in a xenograft-bearing mouse model and autophagy in tumor mass were analyzed in vivo. The expression H19 was increased in GBM and was positively correlated with LC3 or Beclin-1. Silencing H19 inhibited growth and promoted apoptosis in GBM cells both in vitro and in vivo, and miR-491-5p was identified as one of the important mediators. H19 regulated the autophagy signaling pathway at least partly via miR-491-5p. Increased H19 expression in GBM exerts oncogenic effects by sponging miR-491-5p and enhancing autophagy. Therefore, H19 may be explored as a target for GBM therapy.
Collapse
Affiliation(s)
- Guo Wang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoyan Lin
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Han Han
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Hongxu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Ophthalmology, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoli Li
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Chunming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| |
Collapse
|
8
|
Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021; 204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.
Collapse
Affiliation(s)
- Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
9
|
Gan FJ, Li Y, Xu MX, Zhou T, Wu S, Hu K, Li Y, Sun SH, Luo Q. LncRNA BCAR4 expression and predicts the clinical response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Cancer Biomark 2021; 32:339-351. [PMID: 34151842 PMCID: PMC8673519 DOI: 10.3233/cbm-210048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is an important treatment for locally advanced breast cancer (LABC). However, there are no effective biomarkers to predict the efficacy. Therefore, there is an urgent need for new biomarkers to predict the response of LABC to NAC. LncRNA BCAR4 has been detected in a variety of malignant tumor tissues and used as a new biomarker for diagnosis and prognosis. However, LncRNA BCAR4 predicts the response of LABC to NAC is unclear. OBJECTIVE Explore the predictive effect of LncRNA BCAR4 on the efficacy of NAC for LABC in three different evaluation systems. METHODS First, the TCGA database was used to analyze the expression of LncRNA BCAR4 in 33 kinds of malignant tumors, and further explore its expression in breast cancer and its impact on the survival and prognosis of breast cancer. Furthermore, quantitative methods were used to measure the expression level of LncRNA BCAR4 in cancer tissues of 48 LABC patients, and the correlation between LncRNA BCAR4 and clinicopathological status and response to NAC under the evaluation system of 3, RECIST1.1, Miller-Payne (MP) score and whether it reaches pCR,was analyzed. RESULTS TCGA data analysis found that LncRNA is highly expressed in a variety of malignant tumor tissues, including breast cancer. And relatively low expression, the shorter the overall survival time of high expression patients. The high expression of LncRNA BCAR4 is related to the size of the tumor, and there are differences in expression between stage I and other stages, but there is no obvious correlation with the positive lymph node and hormone receptor status. Among the three evaluation systems, only in the RECIST 1.1 evaluation system LncRNA BCAR4 has a predictive effect on NAC for LABC. The expression of LncRNA BCAR4 has no significant correlation with clinical stage, Ki-67% and hormone receptor status, and has no significant correlation with whether patients with locally advanced breast cancer obtain pCR during neoadjuvant chemotherapy. CONCLUSION LncRNA BCAR4 is highly expressed in LABC tissues and may be an effective marker for predicting the efficacy of NAC for LABC.
Collapse
Affiliation(s)
- Feng-Jiao Gan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Li
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng-Xi Xu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tie Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Wu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kang Hu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Su-Hong Sun
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qing Luo
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
11
|
Wang Y, Zhou P, Li P, Yang F, Gao XQ. Long non-coding RNA H19 regulates proliferation and doxorubicin resistance in MCF-7 cells by targeting PARP1. Bioengineered 2021; 11:536-546. [PMID: 32345117 PMCID: PMC8291873 DOI: 10.1080/21655979.2020.1761512] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance is a major obstacle to effective breast cancer chemotherapy. However, the underlying molecular mechanisms remain unclear. The long noncoding RNA H19 (H19) is involved in various stages of tumorigenesis, however, its role in doxorubicin resistance remains unknown. The goal of this study was to evaluate the role of H19 in the development of doxorubicin-resistant breast cancer. Quantitative real-time PCR (qRT-PCR) analyzed H19 expression in chemotherapy-resistant and sensitive breast cancer tissues. Both knockdown and overexpression of H19 were used to assess the sensitivity to doxorubicin in breast cancer cells in vitro and in vivo. qRT-PCR and Western blot were used to explore the doxorubicin resistance mechanism of H19. We observed that the H19 expression was significantly upregulated in chemotherapy-resistant breast cancer tissues and doxorubicin-resistant breast cancer cell lines. Knockdown of H19 enhanced the sensitivity to doxorubicin both in vitro and in vivo. While H19 overexpression developed doxorubicin-resistant in breast cancer cells both in vitro and in vivo. Furthermore, it was revealed that H19 negatively regulated PARP1 expression in breast cancer cells following doxorubicin treatment. Knockdown of H19 sensitized breast cancer cells to doxorubicin by promoting PARP1 upregulation. H19 overexpression could recapitulate doxorubicin resistance by PARP1 downregulation. Our findings revealed that H19 plays a leading role in breast cancer chemoresistance development, mediated mainly through a H19-PARP1 pathway.
Collapse
Affiliation(s)
- Yu Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Peihong Zhou
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengxia Yang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xue-Qiang Gao
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Taheri M. The role of H19 lncRNA in conferring chemoresistance in cancer cells. Biomed Pharmacother 2021; 138:111447. [PMID: 33667788 DOI: 10.1016/j.biopha.2021.111447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
H19 is an oncofetal transcript with crucial roles in the development and progression of several neoplastic cells. With anti-apoptotic, pro-proliferative, and pro-migratory functions, H19 affects the carcinogenic process from different functional points. In addition, H19 has central roles in the induction of chemoresistance in breast cancer, lung cancer, glioma, liver cancer, and other types of cancers. Induction of EMT, activation of oncogenic signaling pathways, and changes in the tumor microenvironment are among mechanisms of participation of H19 in chemoresistance. Paclitaxel, doxorubicin, tamoxifen, erlotinib, gefitinib, temozolomide, and methotrexate are among therapeutic agents whose efficacy is influenced by the expression of H19. In the present paper, we discuss the impact of H19 in conferring resistance to chemotherapeutic agents in different cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
14
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
15
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
16
|
Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 2020; 47:6357-6374. [PMID: 32743775 DOI: 10.1007/s11033-020-05695-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has reported that H19 long non-coding RNA (lncRNA) expression level is deregulated in human cancer. It has been also demonstrated that de-regulated levels of H19 could affect cancer biology by various mechanisms including microRNA (miRNA) production (like miR-675), miRNA sponging and epigenetic modifications. Furthermore, lncRNA could act as a potential diagnosis and prognosis biomarkers and also a candidate therapeutic approach for different human cancers. In this narrative review, we shed light on the molecular mechanism of H19 in cancer development and pathogenesis. Moreover, we discussed the expression pattern and diagnostic and therapeutic importance of H19 as a potential biomarker in a range of human malignancies from breast to osteosarcoma cancer.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyedeh Nasrin Parvar
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
17
|
Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer 2020; 19:96. [PMID: 32460771 PMCID: PMC7251695 DOI: 10.1186/s12943-020-01219-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a deadly disease and remains the third leading cause of cancer-related death worldwide. The 5-year overall survival rate of patients with early-stage localized gastric cancer is more than 60%, whereas that of patients with distant metastasis is less than 5%. Surgical resection is the best option for early-stage gastric cancer, while chemotherapy is mainly used in the middle and advanced stages of this disease, despite the frequently reported treatment failure due to chemotherapy resistance. Therefore, there is an unmet medical need for identifying new biomarkers for the early diagnosis and proper management of patients, to achieve the best response to treatment. Long non-coding RNAs (lncRNAs) in body fluids have attracted widespread attention as biomarkers for early screening, diagnosis, treatment, prognosis, and responses to drugs due to the high specificity and sensitivity. In the present review, we focus on the clinical potential of lncRNAs as biomarkers in liquid biopsies in the diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance as well as their potential as therapeutic targets for gastric cancer precision medicine.
Collapse
Affiliation(s)
- Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| | - Shan-Ming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| |
Collapse
|
18
|
Zhang Y, Wu Y, Jia Z, Cao D, Yang N, Wang Y, Cao X, Jiang J. Long non-coding RNA polymorphisms on 8q24 are associated with the prognosis of gastric cancer in a Chinese population. PeerJ 2020; 8:e8600. [PMID: 32117633 PMCID: PMC7039120 DOI: 10.7717/peerj.8600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) remains the third leading cause of cancer death in China. Although genome-wide association studies have identified the association between several single nucleotide polymorphisms (SNPs) on 8q24 and the risk of GC, the role of these SNPs in the prognosis of GC in Chinese populations has not yet been fully evaluated. Therefore, this study was conducted to explore the association between long non-coding RNA (lncRNA) polymorphisms on 8q24 and the prognosis of GC. Methods We genotyped 726 surgically resected GC patients to explore the association between eight SNPs in the lncRNAs CCAT1 (rs10087719, rs7816475), PCAT1 (rs1026411), PRNCR1 (rs12682421, rs13252298), and CASC8 (rs1562430, rs4871789, rs6983267) transcribed from the 8q24 locus and the prognosis of GC in a Chinese population. Results We found that the patients carrying rs12682421 AA genotypes survived for a shorter time than those with the GG/GA genotype (HR = 1.39, 95% confidence interval (CI) [1.09-1.78]). Compared with the CC/CT genotype, the TT genotype of rs1562430 was associated with an increased risk of death (HR = 1.38, 95% CI [1.06-1.80]). Furthermore, the results also identified the rs1026411 SNP as an independent prognostic factor for poor survival in GC patients. Patients carrying AA/AG variant genotypes had a 36% increased risk of death compared to those carrying the GG genotype (HR = 1.36, 95% CI [1.06-1.74]). These findings suggested that the rs12682421, rs1026411 and rs1562430 SNPs may contribute to the survival of GC and be prognostic markers for GC.
Collapse
Affiliation(s)
- Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhifang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Yang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|