1
|
Chen S, Li Z, Hu M, Yu Y, Liu B, Saiyin W, Li J. Triptolide Treatment for Oral Squamous Cell Carcinoma by Regulating the LncRNA-MSTRG.24214.1/MiRNA-939-5p/LCN2 Axis. J Oral Pathol Med 2025; 54:312-324. [PMID: 40097309 DOI: 10.1111/jop.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Although triptolide has demonstrated efficacy in treating oral squamous cell carcinoma (OSCC), its precise molecular mechanism remains unclear. This study investigated the mechanism underlying triptolide's action in lncRNA-mediated competing endogenous RNA (ceRNA) regulation. METHODS The impact of triptolide on OSCC in vivo was validated using a xenograft tumor model. Whole-transcriptome sequencing and bioinformatics analysis were conducted to construct the lncRNA-miRNA-mRNA regulatory network. Relative gene and protein expression levels were confirmed using qRT-PCR and Western blot. Dual-luciferase assays were performed to assess target interactions, while cell proliferation was measured using CCK8 assays, and cell migration and invasion were evaluated via wound healing and transwell assays. RESULTS Triptolide markedly reduced proliferation, migration, and invasion in Cal27 and Tca8113 cells. After 22 days of triptolide treatment, the tumor volume of mice gradually shrank. This led to significant upregulation of cleaved Caspase-3 and Bax, alongside downregulation of Bcl-2. Transcriptome sequencing and bioinformatics analysis identified 266 differentially expressed mRNAs, 528 lncRNAs, and 85 miRNAs. Enhanced expression of lncRNA MSTRG.24214.1 and mRNA LCN2, along with reduced expression of miR-939-5p, was observed in the triptolide group. CONCLUSIONS The lncRNA-miRNA-mRNA ceRNA network associated with triptolide's impact on OSCC was successfully established. Triptolide suppressed OSCC development and progression both in vitro and in vivo, potentially through modulation of the MSTRG.24214.1-miR-939-5p-LCN2 axis. These findings offer a solid foundation for future personalized triptolide-based therapeutic approaches.
Collapse
Affiliation(s)
- Siyan Chen
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengmiao Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menglin Hu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wuliji Saiyin
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral Implant Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jichen Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Kouchaki H, Kamyab P, Darbeheshti F, Gharezade A, Fouladseresht H, Tabrizi R. miR-939, as an important regulator in various cancers pathogenesis, has diagnostic, prognostic, and therapeutic values: a review. J Egypt Natl Canc Inst 2024; 36:16. [PMID: 38679648 DOI: 10.1186/s43046-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are highly conserved non-coding RNAs with a short length (18-24 nucleotides) that directly bind to a complementary sequence within 3'-untranslated regions of their target mRNAs and regulate gene expression, post-transcriptionally. They play crucial roles in diverse biological processes, including cell proliferation, apoptosis, and differentiation. In the context of cancer, miRNAs are key regulators of growth, angiogenesis, metastasis, and drug resistance. MAIN BODY This review primarily focuses on miR-939 and its expanding roles and target genes in cancer pathogenesis. It compiles findings from various investigations. MiRNAs, due to their dysregulated expression in tumor environments, hold potential as cancer biomarkers. Several studies have highlighted the dysregulation of miR-939 expression in human cancers. CONCLUSION Our study highlights the potential of miR-939 as a valuable target in cancer diagnosis, prognosis, and treatment. The aberrant expression of miR-939, along with other miRNAs, underscores their significance in advancing our understanding of cancer biology and their promise in personalized cancer care.
Collapse
Affiliation(s)
- Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parnia Kamyab
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Tabrizi
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
3
|
Xu W, Huang Y, Lei Z, Zhou J. miR-939-3p induces sarcoma proliferation and poor prognosis via suppressing BATF2. Front Oncol 2024; 14:1346531. [PMID: 38420020 PMCID: PMC10899471 DOI: 10.3389/fonc.2024.1346531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background Sarcoma is a rare and aggressive malignancy with poor prognosis, in which oncogene activation and tumor suppressor inactivation are involved. Accumulated studies suggested basic leucine zipper transcription factor ATF-like 2 (BATF2) as a candidate tumor suppressor, but its specific role and mechanism in sarcoma remain unclear. Methods The expression levels of BATF2 and miR-939-3p were evaluated by using human sarcoma samples, cell lines and xenograft mouse models. Bioinformatics analysis, qPCR, Western blot, cell proliferation assay, overexpression plasmid construction, point mutation and dual luciferase reporter assay were utilized to investigate the role and mechanism of miR-939-3p in sarcoma. Results In this study, we demonstrated that the expression of BATF2 was downregulated in human sarcoma tissues and cell lines. The downregulation of BATF2 was negatively associated with the prognosis of sarcoma patients. Subsequent bioinformatic prediction and experimental validations showed that BATF2 expression was reduced by microRNA (miR)-939-3p mimic and increased by miR-939-3p inhibitor. Additionally, miR-939-3p was upregulated in sarcoma tissues and cells, correlating with a poor prognosis of sarcoma patients. Moreover, miR-939-3p overexpression suppressed sarcoma cell proliferation, which was significantly attenuated by the restoration of BATF2, while siRNA-mediated knockdown of BATF2 aggravated the miR-939-3p-induced promotion of sarcoma cell proliferation. Further computational algorithms and dual-luciferase reporter assays demonstrated that miR-939-3p repressed BATF2 expression via directly binding to its 3' untranslated region (3' UTR). Conclusion Collectively, these findings identified miR-939-3p as a novel regulator of BATF2, as well as a prognostic biomarker in sarcoma, and revealed that suppressing miR-939-3p or inducing BATF2 expression may serve as a promising therapeutic strategy against sarcoma.
Collapse
Affiliation(s)
- Wanwen Xu
- Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zengjie Lei
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|
5
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Gao S, Shi P, Tian Z, Yang X, Liu N. Overexpression of miR-1225 promotes the progression of breast cancer, resulting in poor prognosis. Clin Exp Med 2021; 21:287-296. [PMID: 33423149 DOI: 10.1007/s10238-020-00676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/21/2020] [Indexed: 11/26/2022]
Abstract
Breast cancer is the most common cancer among women, with metastasis as the principal cause of mortality. MiR-1225 has been reported to play roles in the progression of various cancers, but its role in breast cancer was unclear. The expression of miR-1225 was investigated in breast cancer tissues and cells by quantitative real-time PCR. The role of miR-1225 in the cell process of OS was analyzed by CCK-8 assay and Transwell assay. The prognostic value of miR-1225 was evaluated by Kaplan-Meier survival curves and Cox regression analysis. miR-1225 was significantly upregulated in breast cancer tissues, which was associated with the TNM stage of breast cancer patients. The prognosis of patients with high miR-1225 expression was worse than that of patients with low miR-1225 expression, which indicated that miR-1225 acted as an independent factor for the prognosis of breast cancer. Additionally, the upregulation of miR-1225 promoted cell proliferation, migration, and invasion of breast cancer, which suggested miR-1225 might be involved in the progression of breast cancer. JAK1 was identified as the direct target of miR-1225, which was also involved in cell proliferation, migration, and invasion of breast cancer. The overexpression of miR-1225 in breast cancer indicates a poor prognosis of patients and promotes the progression of breast cancer by targeting JAK1. miR-1225 may be a biomarker and therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shangfa Gao
- Department of General Surgery, Chengwu People's Hospital Affiliated to Shandong First Medical University, Heze, 274200, Shandong, China
| | - Peng Shi
- Department of Gland Surgery, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhishuai Tian
- Department of General Surgery, Chengwu People's Hospital Affiliated to Shandong First Medical University, Heze, 274200, Shandong, China
| | - Xingwang Yang
- Department of General Surgery, Zibo City Linzi District People's Hospital, No. 139, Huangong Road, Zibo, 255400, Shandong, China.
| | - Ning Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xi'antai Avenue, Changchun City, 130033, Jilin Province, China.
| |
Collapse
|
7
|
De Novo A-to-I RNA Editing Discovery in lncRNA. Cancers (Basel) 2020; 12:cancers12102959. [PMID: 33066171 PMCID: PMC7650826 DOI: 10.3390/cancers12102959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Long non-coding RNAs are emerging as key regulators of gene expression at both transcriptional and translational levels, and their alterations (in expression or sequence) are linked to tumorigenesis and tumor progression. RNA editing has the unique ability to change the RNA sequence without altering the integrity or sequence of genomic DNA, with adenosine to inosine (A-to-I) RNA editing being the most common event in humans. With the ability to change the genetic information after transcription, RNA editing is an essential player in the transcriptome and proteome enrichment; however, when deregulated, it can contribute to cell transformation. In this article, we performed the first deep de novo editing survey in lncRNA, demonstrating that RNA editing is a pervasive phenomenon involving lncRNAs important in the brain and brain cancer. Our study will open a new field of research in which the interplay between lncRNA and RNA editing can add novel insights into cancer. Abstract Background: Adenosine to inosine (A-to-I) RNA editing is the most frequent editing event in humans. It converts adenosine to inosine in double-stranded RNA regions (in coding and non-coding RNAs) through the action of the adenosine deaminase acting on RNA (ADAR) enzymes. Long non-coding RNAs, particularly abundant in the brain, account for a large fraction of the human transcriptome, and their important regulatory role is becoming progressively evident in both normal and transformed cells. Results: Herein, we present a bioinformatic analysis to generate a comprehensive inosinome picture in long non-coding RNAs (lncRNAs), using an ad hoc index and searching for de novo editing events in the normal brain cortex as well as in glioblastoma, a highly aggressive human brain cancer. We discovered >10,000 new sites and 335 novel lncRNAs that undergo editing, never reported before. We found a generalized downregulation of editing at multiple lncRNA sites in glioblastoma samples when compared to the normal brain cortex. Conclusion: Overall, our study discloses a novel layer of complexity that controls lncRNAs in the brain and brain cancer.
Collapse
|
8
|
Construction of circRNA-Associated ceRNA Network Reveals Novel Biomarkers for Esophageal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7958362. [PMID: 32908582 PMCID: PMC7474783 DOI: 10.1155/2020/7958362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Objective Esophageal cancer (ESCC) is reported to be the eighth most common malignant tumors worldwide with high mortality. However, the functions of majority circRNAs in ESCC requires to be further explored. Methods This study identified differently expressed circRNAs in 3 paired ESCC using RNA-sequencing method. The interactions among circRNAs, miRNAs, and mRNAs were predicted using bioinformatics analysis. Results In this study, using RNA-sequencing method and integrated bioinformatics analysis, 418 overexpressed circRNAs and 637 reduced circRNAs in ESCC sample were identified. Based on the mechanism that circRNAs could play as ceRNAs to modulate targets expression, circRNA-miRNA and circRNA-miRNA-mRNA networks were constructed in this study. Based on the network analysis, 7 circRNAs, including circ_0002255, circ_0000530, circ_0001904, circ_0001005, circ_0000513, circ_0000075, and circ_0001121, were identified as key circRNAs in ESCC. We found that circ_0002255 was related to the regulation of substrate adhesion-dependent cell spreading. circ_0001121 was involved in regulating nucleocytoplasmic transport. circ_0000513 played a key role in regulating Adherens junction, B cell receptor signaling pathway. Meanwhile, we observed circ_0000075 was involved in regulating zinc II ion transport, transition metal ion homeostasis, and angiogenesis. Conclusion We thought this study could provide novel biomarkers for the prognosis of ESCC.
Collapse
|
9
|
Zhang X, Hu Y, Gong C, Zhang C. Overexpression of miR-518b in non-small cell lung cancer serves as a biomarker and facilitates tumor cell proliferation, migration and invasion. Oncol Lett 2020; 20:1213-1220. [PMID: 32724361 PMCID: PMC7377155 DOI: 10.3892/ol.2020.11667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
Abstract
Several microRNAs (miRNA/miR) have been reported to serve critical roles in tumorigenesis. The present study aimed to investigate miR-518b expression in non-small cell lung cancer (NSCLC), and determine its clinical significance and biological function in this malignancy. Reverse transcription-quantitative PCR was performed to assess miR-518b expression in NSCLC. The diagnostic value of miR-518b was determined via a receiver operating characteristic curve, while its prognostic value was assessed using the Kaplan-Meier method. Gain- and loss-of-function experiments were performed to determine the functional role of miR-518b in NSCLC progression. The results demonstrated that miR-518b expression was upregulated in NSCLC serum, tissues and cell lines compared with the corresponding normal controls. Furthermore, high miR-518b expression was significantly associated with larger tumor size, lymph node metastasis and advanced TNM stage, as well as poor overall survival in patients with NSCLC. Serum miR-518b expression was identified as a candidate diagnostic biomarker for NSCLC, with sensitivity of 88.1% and specificity of 81.7%. Furthermore, the cell experiments indicated that NSCLC cell proliferation, migration and invasion were enhanced following overexpression of miR-518b; however, these effects were reversed following miR-518b knockdown. Taken together, the results of the present study suggest that elevated miR-518b expression in NSCLC serves a potential oncogenic role by facilitating tumor cell proliferation, migration and invasion, and thus may serve as a candidate diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xinfang Zhang
- Clinical Laboratory, Qilu Hospital Huantai Branch, Zibo, Shandong 256400, P.R. China
| | - Ying Hu
- Department of Blood Transfusion, Qilu Hospital Huantai Branch, Zibo, Shandong 256400, P.R. China
| | - Cuixue Gong
- Outpatient Department, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Chunjie Zhang
- Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
10
|
Li Y, Liu Y, Yao J, Li R, Fan X. Downregulation of miR-484 is associated with poor prognosis and tumor progression of gastric cancer. Diagn Pathol 2020; 15:25. [PMID: 32192507 PMCID: PMC7082931 DOI: 10.1186/s13000-020-00946-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer is one of the most common cancers leading to high cancer mortality. MicroRNA-484 (miR-484) has been evaluated as a biomarker for various types of cancers. The subject of this study is to investigate the functional role of miR-484 in gastric cancer. Methods The expression of miR-484 in gastric cancer was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Kaplan-Meier survival and Cox regression analyses were employed to explore the prognostic significance of miR-484 in gastric cancer. The functional role of miR-484 in gastric cancer was determined by CCK-8 and Transwell assays. Results The results showed that miR-484 was significantly downregulated in gastric cancer tissues and cell lines. The downregulation of miR-484 was closely related to differentiation, lymph node metastasis, TNM stage, and poor prognosis. Cox regression analyses demonstrated that miR-484 was an independent prognosis indicator for gastric cancer patients. Additionally, the downregulation of miR-484 enhanced cell proliferation, migration, and invasion in gastric cancer cells. Conclusion These data demonstrated that miR-484 can serve as a potential prognostic biomarker and therapeutic target for gastric cancer and it may be involved in the progression of gastric cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Yusong Liu
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Jie Yao
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Rui Li
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China
| | - Xiaocheng Fan
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong, 272000, China.
| |
Collapse
|
11
|
Yang Z, Yin H, Shi L, Qian X. A novel microRNA signature for pathological grading in lung adenocarcinoma based on TCGA and GEO data. Int J Mol Med 2020; 45:1397-1408. [PMID: 32323746 PMCID: PMC7138293 DOI: 10.3892/ijmm.2020.4526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common types of lung cancer and its poor prognosis largely depends on the tumor pathological stage. Critical roles of microRNAs (miRNAs) have been reported in the tumorigenesis and progression of lung cancer. However, whether the differential expression pattern of miRNAs could be used to distinguish early-stage (stage I) from mid-late-stage (stages II–IV) LUAD tumors is still unclear. In this study, clinical information and miRNA expression profiles of patients with LUAD were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. TCGA-LUAD (n=470) dataset was used for model training and validation, and the GSE62182 (n=94) and GSE83527 (n=36) datasets were used as external independent test datasets. The diagnostic model was created through miRNA feature selection followed by SVM classifier and was confirmed by 5-fold cross-validation. A receiver operating characteristic curve was calculated to evaluate the accuracy and robustness of the model. Using the DX score and LIBSVM tool, a 16-miRNA signature that could distinguish LUAD pathological stages was identified. The area under the curve rates were 0.62 [95% confidence interval (CI): 0.56–0.67], 0.66 (95% CI: 0.54–0.76) and 0.63 (95% CI: 0.43–0.82) in TCGA-LUAD internal validation dataset, the GSE62182 external validation dataset, and the GSE83527 external validation dataset, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses suggested that the target genes of the 16-miRNA signature were mainly involved in metabolic pathways. The present findings demonstrate that a 16-miRNA signature could serve as a promising diagnostic biomarker for pathological staging in LUAD.
Collapse
Affiliation(s)
- Zhiyu Yang
- SJTU‑Yitu Joint Laboratory of Artificial Intelligence in Healthcare, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hongkun Yin
- Shanghai Yitu Healthcare Technology Co. Ltd., Shanghai 200051, P.R. China
| | - Lei Shi
- Hangzhou Yitu Healthcare Technology Co. Ltd., Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaohua Qian
- SJTU‑Yitu Joint Laboratory of Artificial Intelligence in Healthcare, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
12
|
Shen Y, Chen G, Gao H, Li Y, Zhuang L, Meng Z, Liu L. miR-939-5p Contributes to the Migration and Invasion of Pancreatic Cancer by Targeting ARHGAP4. Onco Targets Ther 2020; 13:389-399. [PMID: 32021284 PMCID: PMC6969703 DOI: 10.2147/ott.s227644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Rho GTPase-activating protein 4 (ARHGAP4) is a GTPase-activating protein for the small GTPases of the Rho family that is involved in tumorigenesis. We recently reported that ARHGAP4 can mediate Warburg effect and malignant phenotype of pancreatic cancer. However, the regulation of ARHGAP4 remains unclear. METHODS ARHGAP4 and miR-939-5p expressions in pancreatic cancer tissues and cell lines were measured by real-time PCR or Western blotting. Pancreatic cancer cells were transfected with miR-939-5p inhibitor, miR-939-5p mimic and/or lentivirus expressing ARHGAP4, and the cell viability, invasion and migration were measured by CCK-8 and Transwell assay, respectively. The suppression of ARHGAP4 expression by miR-939-5p was revealed by luciferase reporter assay, real-time PCR or Western blotting. RESULTS ARHGAP4 expression was decreased, while miR-939-5p was increased in pancreatic cancer tissues compared with adjacent-normal pancreatic tissues. Higher miR-939-5p expression was correlated with advanced pathological stages and poor prognosis of pancreatic cancer patients. miR-939-5p directly targeted ARHGAP4. Either miR-939-5p down-regulation or ARHGAP4 overexpression inhibited viability, invasion and migration of pancreatic cancer cells. However, ARHGAP4 overexpression markedly inhibited the increased viability, migration, and invasion induced by miR-939-5p up-regulation in pancreatic cancer cells. CONCLUSION These observations suggested that miR-939-5p regulates the malignant phenotype of pancreatic cancer cells by targeting ARHGAP4, establishing miR-939-5p as a novel regulator of ARHGAP4 with a critical role in tumorigenesis in pancreatic cancer.
Collapse
Affiliation(s)
- Yehua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Gang Chen
- Department of Pediatric Cardiothoracic Surgery, Children’s Hospital of Fudan University, Shanghai201102, People’s Republic of China
| | - Huifeng Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| |
Collapse
|