1
|
Li Z, Tian Y. Role of long noncoding RNAs in the regulation of epithelial‑mesenchymal transition in osteosarcoma (Review). Oncol Rep 2025; 53:35. [PMID: 39930817 PMCID: PMC11783035 DOI: 10.3892/or.2025.8868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
Osteosarcoma (OS) is one of the most widespread malignant bone tissue tumors. However, its early diagnosis is difficult, leading to poor prognoses. Long noncoding RNA (lncRNA) can serve as a molecular marker for the early diagnosis and treatment of OS. lncRNAs regulate the epithelial‑mesenchymal transition (EMT) process to control the occurrence and progression of OS. The present review summarizes the studies on lncRNA regulation of OS via the EMT process. A search of the PubMed database yielded 93 published articles since January 2015, of which 73 focused on lncRNA regulation of OS via the EMT process. The present review has classified lncRNAs based on their relationship with tumors (promoting or inhibiting), mechanism of action and naming convention. Most lncRNAs promote OS through EMT and act via microRNA sponging. Previous studies have focused on lncRNAs with known functions, antisense lncRNAs and long intergenic noncoding RNAs. The findings indicated that lncRNAs can regulate the EMT process through various mechanisms to control OS progression. Further studies on specific lncRNAs and their underlying mechanisms will provide insights for the development of strategies for the diagnosis, prevention and treatment of OS.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, General Hospital of Northern Theater Command, Beifang Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
He A, Liao F, Lin X. Circ_0007351 Exerts an Oncogenic Role In Colorectal Cancer Depending on the Modulation of the miR-5195-3p/GPRC5A Cascade. Mol Biotechnol 2025; 67:617-627. [PMID: 38386274 DOI: 10.1007/s12033-024-01071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
Circular RNAs (circRNAs) exert critical functions in colorectal cancer development. In this work, we wanted to elucidate the functional role and regulatory mechanism of circ_0007351 in colorectal cancer. For quantification of circ_0007351, microRNA (miR)-5195-3p and G Protein-coupled receptor class C group 5 member A (GPRC5A), a qRT-PCR, immunoblotting or immunohistochemistry assay was performed. Effects of circ_0007351/miR-5195-3p/GPRC5A cascade were evaluated by determining cell viability, proliferation, colony formation, motility, and invasion. Relationships among variables were assessed by dual-luciferase reporter assay. Animal studies were performed to evaluate circ_0007351's function in the growth of xenograft tumors. Circ_0007351 was markedly up-regulated in colorectal cancer tissues and cells. Down-regulation of circ_0007351 hindered cell growth, migration and invasiveness. Also, circ_0007351 depletion exerted a suppressive function in colorectal cell xenograft growth in vivo. Mechanistically, circ_0007351 sponged miR-5195-3p to sequester miR-5195-3p. Reduction of available miR-5195-3p neutralized the effects of circ_0007351 down-regulation on cell phenotypes. MiR-5195-3p directly targeted and inhibited GPRC5A. Circ_0007351 regulated GPRC5A expression by sponging miR-5195-3p. Moreover, the effects of circ_0007351 down-regulation on cell functional phenotypes were due to in part the reduction of GPRC5A expression. Our findings show that circ_0007351 down-regulation impedes proliferation, motility, and invasiveness in colorectal cancer cells at least in part via the regulation of the miR-5195-3p/GPRC5A cascade, highlighting that circ_0007351 inhibition may have a potential therapeutic value for colorectal cancer.
Collapse
Affiliation(s)
- Aijun He
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China
| | - Fangxin Liao
- Oncology Department, People's Hospital of Shenzhen Nanshan, Shenzhen, 518100, China
| | - Xiaohui Lin
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China.
| |
Collapse
|
3
|
Peng C, Huang J, Li M, Liu G, Liu L, Lin J, Sun W, Liu H, Huang Y, Chen X. Uncovering periodontitis-associated markers through the aggregation of transcriptomics information from diverse sources. Front Genet 2024; 15:1398582. [PMID: 38919957 PMCID: PMC11196414 DOI: 10.3389/fgene.2024.1398582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Periodontitis, a common chronic inflammatory disease, significantly impacted oral health. To provide novel biological indicators for the diagnosis and treatment of periodontitis, we analyzed public microarray datasets to identify biomarkers associated with periodontitis. Method The Gene Expression Omnibus (GEO) datasets GSE16134 and GSE106090 were downloaded. We performed differential analysis and robust rank aggregation (RRA) to obtain a list of differential genes. To obtain the core modules and core genes related to periodontitis, we evaluated differential genes through enrichment analysis, correlation analysis, protein-protein interaction (PPI) network and competing endogenous RNA (ceRNA) network analysis. Potential biomarkers for periodontitis were identified through comparative analysis of dual networks (PPI network and ceRNA network). PPI network analysis was performed in STRING. The ceRNA network consisted of RRA differentially expressed messenger RNAs (RRA_DEmRNAs) and RRA differentially expressed long non-coding RNAs (RRA_DElncRNAs), which regulated each other's expression by sharing microRNA (miRNA) target sites. Results RRA_DEmRNAs were significantly enriched in inflammation-related biological processes, osteoblast differentiation, inflammatory response pathways and immunomodulatory pathways. Comparing the core ceRNA module and the core PPI module, C1QA, CENPK, CENPU and BST2 were found to be the common genes of the two core modules, and C1QA was highly correlated with inflammatory functionality. C1QA and BST2 were significantly enriched in immune-regulatory pathways. Meanwhile, LINC01133 played a significant role in regulating the expression of the core genes during the pathogenesis of periodontitis. Conclusion The identified biomarkers C1QA, CENPK, CENPU, BST2 and LINC01133 provided valuable insight into periodontitis pathology.
Collapse
Affiliation(s)
- Chujun Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jinhang Huang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
| | - Mingyue Li
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Guanru Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Lingxian Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Jiechun Lin
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Weijun Sun
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Hongtao Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Yonghui Huang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Xin Chen
- School of Automation, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
5
|
Wang Z, Zhou X, Deng X, Ye D, Liu D, Zhou B, Zheng W, Wang X, Wang Y, Borkhuu O, Fang L. miR-186-ANXA9 signaling inhibits tumorigenesis in breast cancer. Front Oncol 2023; 13:1166666. [PMID: 37841425 PMCID: PMC10570552 DOI: 10.3389/fonc.2023.1166666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA in cells mostly functioning to silence the target mRNAs. In the current study, a miRNA screening analysis identified miR-186-5p to be downregulated in human breast cancer tumors. Functional studies in vitro demonstrated that overexpression of miR-186-5p inhibited cellular proliferation and induced cell apoptosis in multiple breast cancer cell lines including MDA-MB-231, MCF-7, and BT549 cells. Transplantation of the miR-186-5p-overexpressing MDA-MB-231 cells into nude mice significantly inhibited mammary tumor growth in vivo. Sequence blast analysis predicted annexin A9 (ANXA9) as a target gene of miR-186-5p, which was validated by luciferase reporter assay, QRT-PCR analysis, and western blot. Additional gene expression analysis of clinical tumor samples indicated a negative correlation between miR-186-5p and ANXA9 in human breast cancer. Knockdown of ANXA9 mimicked the phenotype of miR-186-5p overexpression. Reintroduction of ANXA9 back rescued the miR-186-5p-induced cell apoptosis. In addition, miR-186-5p decreased the expression of Bcl-2 and increased the expression of p53, suggesting a mechanism regulating miR-186-5p-induced cellular apoptosis. In summary, our study is the first to demonstrate miR-186-5p-ANXA9 signaling in suppressing human breast cancer. It provided a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhongrui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Oyungerel Borkhuu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chakravorty G, Ahmad S, Godbole MS, Gupta S, Badwe RA, Dutt A. Deciphering the mechanisms of action of progesterone in breast cancer. Oncotarget 2023; 14:660-667. [PMID: 37395734 PMCID: PMC10317070 DOI: 10.18632/oncotarget.28455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/27/2023] [Indexed: 07/04/2023] Open
Abstract
A practice-changing, randomized, controlled clinical study established that preoperative hydroxyprogesterone administration improves disease-free and overall survival in patients with node-positive breast cancer. This research perspective summarizes evidences from our studies that preoperative hydroxyprogesterone administration may improve disease-free and overall survival in patients with node-positive breast cancer by modulating cellular stress response and negative regulation of inflammation. Non-coding RNAs, particularly DSCAM-AS1, play a regulatory role in this process, along with the upregulation of the kinase gene SGK1 and activation of the SGK1/AP-1/NDRG1 axis. Progesterone-induced modification of the progesterone receptor and estrogen receptor genomic binding pattern is also involved in orchestrating estrogen signaling in breast cancer, preventing cell migration and invasion, and improving patient outcomes. We also highlight the role of progesterone in endocrine therapy resistance, which could lead to novel treatment options for patients with hormone receptor-positive breast cancer and for those who develop resistance to traditional endocrine therapies.
Collapse
Affiliation(s)
- Gaurav Chakravorty
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| | - Suhail Ahmad
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| | - Mukul S. Godbole
- Department of Biosciences and Technology, Faculty of Sciences and Health Sciences, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India
| | - Rajendra A. Badwe
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| |
Collapse
|
7
|
Xiaotong S, Xiao L, Shiyu L, Zhiguo B, Chunyang F, Jianguo L. LncRNAs could play a vital role in osteosarcoma treatment: Inhibiting osteosarcoma progression and improving chemotherapy resistance. Front Genet 2023; 13:1022155. [PMID: 36726721 PMCID: PMC9885180 DOI: 10.3389/fgene.2022.1022155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary solid malignant tumors in orthopedics, and its main clinical treatments are surgery and chemotherapy. However, a wide surgical resection range, functional reconstruction of postoperative limbs, and chemotherapy resistance remain as challenges for patients and orthopedists. To address these problems, the discovery of new effective conservative treatments is important. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length that do not encode proteins. Researchers have recently found that long non-coding RNAs are closely associated with the development of OS, indicating their potentially vital role in new treatment methods for OS. This review presents new findings regarding the association of lncRNAs with OS and summarizes potential clinical applications of OS with lncRNAs, including the downregulation of oncogenic lncRNAs, upregulation of tumor suppressive lncRNAs, and lncRNAs-based treatment to improve chemotherapy resistance. We hope these potential methods will be translated into clinical applications and greatly reduce patient suffering.
Collapse
Affiliation(s)
- Shi Xiaotong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Li Xiao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liao Shiyu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Bi Zhiguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Chunyang
- Department of Obstetrics and Gynecology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| | - Liu Jianguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| |
Collapse
|
8
|
Yadav N, Sunder R, Desai S, Dharavath B, Chandrani P, Godbole M, Dutt A. Progesterone modulates the DSCAM-AS1/miR-130a/ESR1 axis to suppress cell invasion and migration in breast cancer. Breast Cancer Res 2022; 24:97. [PMID: 36578092 PMCID: PMC9798554 DOI: 10.1186/s13058-022-01597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A preoperative-progesterone intervention increases disease-free survival in patients with breast cancer, with an unknown underlying mechanism. We elucidated the role of non-coding RNAs in response to progesterone in human breast cancer. METHODS Whole transcriptome sequencing dataset of 30 breast primary tumors (10 tumors exposed to hydroxyprogesterone and 20 tumors as control) were re-analyzed to identify differentially expressed non-coding RNAs followed by real-time PCR analyses to validate the expression of candidates. Functional analyses were performed by genetic knockdown, biochemical, and cell-based assays. RESULTS We identified a significant downregulation in the expression of a long non-coding RNA, Down syndrome cell adhesion molecule antisense DSCAM-AS1, in response to progesterone treatment in breast cancer. The progesterone-induced expression of DSCAM-AS1 could be effectively blocked by the knockdown of progesterone receptor (PR) or treatment of cells with mifepristone (PR-antagonist). We further show that knockdown of DSCAM-AS1 mimics the effect of progesterone in impeding cell migration and invasion in PR-positive breast cancer cells, while its overexpression shows an opposite effect. Additionally, DSCAM-AS1 sponges the activity of miR-130a that regulates the expression of ESR1 by binding to its 3'-UTR to mediate the effect of progesterone in breast cancer cells. Consistent with our findings, TCGA analysis suggests that high levels of miR-130a correlate with a tendency toward better overall survival in patients with breast cancer. CONCLUSION This study presents a mechanism involving the DSCAM-AS1/miR-130a/ESR1 genomic axis through which progesterone impedes breast cancer cell invasion and migration. The findings highlight the utility of progesterone treatment in impeding metastasis and improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Neelima Yadav
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Medical Oncology Molecular Lab & Centre for Computational Biology, Bioinformatics and Crosstalk Lab, Tata Memorial Centre, Mumbai, Maharashtra, 410210, India
| | - Mukul Godbole
- School of Biosciences and Technology, Faculty of Sciences and Health Sciences, MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
9
|
Shen X, Zhu X, Hu P, Ji T, Qin Y, Zhu J. Knockdown circZNF131 Inhibits Cell Progression and Glycolysis in Gastric Cancer Through miR-186-5p/PFKFB2 Axis. Biochem Genet 2022; 60:1567-1584. [PMID: 35059934 DOI: 10.1007/s10528-021-10165-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Gastric cancer (GC) is a prevalent and heterogeneous malignancy in the digestive system. Increasing studies have suggested that circular RNAs are implicated in GC pathogenesis. This study aimed to explore the biological role and underlying mechanism of circRNA zinc finger protein 131 (circZNF131) in GC. The expression pattern of circZNF131, microRNA-186-5p (miR-186-5p), and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) mRNA in GC tissues and cells was detected by quantitative real-time polymerase chain reaction. The stability of circZNF131 was verified using ribonuclease R assay. Functional experiments were performed by colony formation assay for cloning ability analysis, transwell assay and wounding healing assay for cell metastasis, and flow cytometry for cell apoptosis. Glycolysis metabolism was investigated by determining the levels of glucose uptake and lactate production. The protein detection of apoptosis- or glycolysis-associated markers, PFKFB2, and Ki-67 was implemented by western blot or immunohistochemistry. Dual-luciferase reporter assay was conducted to identify the interaction between miR-186-5p and circZNF131 or PFKFB2. The role of circZNF131 on tumor growth in nude mice was investigated via xenograft tumor assay. Expression analysis indicated that circZNF131 was upregulated in GC tissues and cells in a stable structure. Functional analyses showed that circZNF131 knockdown suppressed GC cell colony formation ability, migration, invasion and glycolysis metabolism, and induced cell apoptosis. Mechanically, miR-186-5p was a target of circZNF131, and miR-186-5p could bind to PFKFB2. Rescue experiments presented that miR-186-5p inhibition reversed the effects of circZNF131 knockdown on GC cell growth and glycolysis, and PFKFB2 overexpression abolished the impacts of miR-186-5p restoration on GC cell progression. Moreover, circZNF131 could positively modulate PFKFB2 expression via sponging miR-186-5p. In vivo, circZNF131 knockdown hindered GC tumor growth by regulating the miR-186-5p/PFKFB2 axis. circZNF131 could exert an oncogenic role in GC malignant development through the miR-186-5p/PFKFB2 axis, which might provide novel targets for GC treatment.
Collapse
Affiliation(s)
- Xingjie Shen
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China.
| | - Xiaoyan Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Peixin Hu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Tingting Ji
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Ying Qin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| |
Collapse
|
10
|
Tan X, Zeng C, Li H, Tan Y, Zhu H. Circ0038632 modulates MiR-186/DNMT3A axis to promote proliferation and metastasis in osteosarcoma. Front Oncol 2022; 12:939994. [PMID: 36059626 PMCID: PMC9434371 DOI: 10.3389/fonc.2022.939994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is a highly malignant solid tumor with poor prognosis, early metastasis, and rapid progression and has a high mortality rate, in which better therapeutic strategies are needed. Circ0038632, also known as circPLK1, is a tumor promotor in multiple cancers. However, its biological functions and molecular regulatory mechanisms in osteosarcoma remain unclear. To ascertain the function of circ0038632 in osteosarcoma, we checked its expression in cells and in tissues and tested its abilities of proliferation and migration. Expression experiment manifested that circ0038632 showed an enhanced expression in osteosarcoma. Functional studies revealed that circ0038632 inhibition reduced cell proliferation and metastasis abilities of osteosarcoma. Mechanism studies revealed that circ0038632 sponged miR-186 to upregulate the expression of DNA methyltransferase 3A (DNMT3A) to promote osteosarcoma progression. The circ0038632/miR-186/DNMT3A axis was involved in osteosarcoma progression. The results elucidated the potential application of circ0038632 as a novel diagnostic biomarker for progressive process of osteosarcoma.
Collapse
Affiliation(s)
- Xinyu Tan
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Xinyu Tan, , ; Hongbo Zhu,
| | - Canjun Zeng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haomiao Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yeru Tan
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xinyu Tan, , ; Hongbo Zhu,
| |
Collapse
|
11
|
Lin F, Wang X, Zhao X, Ren M, Wang Q, Wang J. Circ_0001174 facilitates osteosarcoma cell proliferation, migration, and invasion by targeting the miR-186-5p/MACC1 axis. J Orthop Surg Res 2022; 17:159. [PMID: 35279159 PMCID: PMC8917736 DOI: 10.1186/s13018-022-03059-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Studies of aberrantly expressed circular RNAs (circRNAs) can provide insights into the molecular mechanisms of osteosarcoma (OS). However, the role of circ_0001174 in OS progression remains unknown. This study is aimed to identify differentially expressed circRNAs and messenger RNAs (mRNAs) in patients with OS and to investigate potential regulatory ways of circ_0001174.
Methods
High-throughput sequencing was performed to screen aberrantly expressed circRNAs and mRNAs between tumor and paracancerous tissues from patients with OS. Several bioinformatics tools were used to analyze the functions and pathways of the differentially expressed genes between the tissues. Cell counting kit-8, cell migration and invasion assays were performed to evaluate the functions of the critical circRNAs. RNA interference experiments, quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting were used to explore the relationship between miR-186-5p and circ_0001174 or metastasis-associated in colon cancer 1 (MACC1).
Results
Compared with the paracancerous tissues, 109 circRNAs and 1264 mRNAs were differentially expressed in the OS tissues, including 88 circRNAs and 707 mRNAs that were upregulated and 21 circRNAs and 557 mRNAs that were downregulated. The expression of four upregulated and four downregulated circRNAs was validated using RT-qPCR; the results were consistent with the sequencing data, and circ_0001174 was found to be significantly upregulated in 16 pairs of OS tissues and OS cell lines (fold change > 2.0, P value < 0.05). Knockdown of circ_0001174 inhibited the proliferation, migration, and invasion of OS cells. Additionally, circ_0001174 directly and negatively modulated the expression of miR-186-5p and positively regulated the expression of MACC1.
Conclusions
Abnormally high expression of circ_0001174 may promote the proliferation, migration, and invasion of OS cells through up-regulating MACC1 by sponging miR-186-5p. These results provide insight into therapeutic targets for preventing and treating OS.
Collapse
|
12
|
Xu J, Liao M. Long noncoding RNA SNHG6 promotes papillary thyroid cancer cells proliferation via regulating miR-186/CDK6 axis. Gland Surg 2021; 10:2935-2944. [PMID: 34804881 DOI: 10.21037/gs-21-586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Background Papillary thyroid cancer (PTC) is a common endocrine malignancy, and its incidence rate has been increasing in recent years. Long noncoding RNAs (lncRNAs) participate in cell biological processes through a variety of regulatory ways, and play an essential role in tumor development. Methods This study explored the expression of lncRNA small nucleolar RNA host gene 6 (SNHG6) in PTC by bioinformatics analysis, and quantitative real-time PCR (qRT-PCR). Cell counting kit-8 (CCK-8) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to study the effect of SNHG6 on the proliferation of PTC cells. Luciferase reporter gene assay and western blot were used to study the mechanism. Results SNHG6 was highly expressed in PTC tissue samples and cell lines. In vitro, overexpression of SNHG6 promoted the proliferation of PTC cells, while silencing SNHG6 inhibited the proliferation of PTC cells. miR-186 is the downstream target of SNHG6. SNHG6 regulates the proliferation of PTC cells through miR-186. In addition, CDK6 is the target gene of miR-186, which can inhibit the expression of CDK6 protein. SNHG6 can promote the expression of CDK6 by regulating miR-186. Conclusions SNHG6 is highly expressed in PTC and can promote the proliferation of PTC cells by regulating the miR-186/CDK6 axis, which is expected to become a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Jian Xu
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Miaomiao Liao
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Ebrahimzadeh K. A Review on the Carcinogenic Roles of DSCAM-AS1. Front Cell Dev Biol 2021; 9:758513. [PMID: 34708048 PMCID: PMC8542687 DOI: 10.3389/fcell.2021.758513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts with fundamental roles in the carcinogenesis. DSCAM Antisense RNA 1 (DSCAM−AS1) is an example of this group of transcripts which has been firstly identified in an attempt to find differentially expressed transcripts between breast tumor cells and benign breast samples. The pathogenic roles of DSCAM-AS1 have been vastly assessed in breast cancer, yet its roles are not restricted to this type of cancer. Independent studies in non-small cell lung cancer, colorectal cancer, osteosarcoma, hepatocellular carcinoma, melanoma and cervical cancer have validated participation of DSCAM-AS1 in the carcinogenic processes. miR-577, miR-122-5p, miR-204-5p, miR-136, miR−137, miR−382, miR−183, miR−99, miR-3173-5p, miR-874-3p, miR-874-3p, miR-150-5p, miR-2467-3p, miR-216b, miR-384, miR-186-5p, miR-338-3p, miR-877-5p and miR-101 are among miRNAs which interact with DSCAM-AS1. Moreover, this lncRNA has interactions with Wnt/β-catenin pathway. The current study aims at summarization of the results of studies which focused on the assessment of oncogenic role of DSCAM-AS1.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|