1
|
De Landtsheer S, Badkas A, Kulms D, Sauter T. Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity. Brief Bioinform 2024; 25:bbae567. [PMID: 39494610 PMCID: PMC11532660 DOI: 10.1093/bib/bbae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Collapse
Affiliation(s)
- Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Duan SL, Jiang Y, Li GQ, Fu W, Song Z, Li LN, Li J. Research insights into the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM): their roles in various tumors. PeerJ 2024; 12:e16757. [PMID: 38223763 PMCID: PMC10787544 DOI: 10.7717/peerj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Yingke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
| | - Guo-Qing Li
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Weijie Fu
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha Province, Hunan, China
| | - Li-Nan Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Li J, Wang X, Wang X, Liu Y, Zheng N, Xu P, Zhang X, Xue L. CMTM Family and Gastrointestinal Tract Cancers: A Comprehensive Review. Cancer Manag Res 2022; 14:1551-1563. [PMID: 35502328 PMCID: PMC9056025 DOI: 10.2147/cmar.s358963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Gastrointestinal tract cancers are a highly heterogeneous group of malignant diseases, contributing significantly to the burden of death worldwide. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) plays important roles in cancer development and progression. Since the first member was cloned, there have been abundant studies on the relationships between the CMTM family and human cancers. It has been reported that the CMTM family has a large potential prognostic value for multiple cancers. Meanwhile, upregulated or downregulated expression of the family members was related to advanced tumor stage, metastasis, and overall survival. Studies have also reported that these proteins play critical roles in antitumor immunity. We performed a systematic review to sum up the latest advances of CMTM family' roles in gastrointestinal tract cancers, with a primary focus on hepatocellular carcinoma and gastric carcinoma.
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaozi Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoning Wang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Yan Liu
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Na Zheng
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Pengwei Xu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Liying Xue
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
5
|
Chen Z, Cui N, Zhao JS, Wu JF, Ma F, Li C, Liu XY. Expressions of ZNF436, β-catenin, EGFR, and CMTM5 in breast cancer and their clinical significances. Eur J Histochem 2021; 65. [PMID: 33478201 PMCID: PMC7856825 DOI: 10.4081/ejh.2021.3173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
As the leading malignancy among women, breast cancer is a serious threat to the life and health of women. In this context, it is of particular importance that a proper therapeutic target be identified for breast cancer treatment. We collected the pathological tissues of 80 patients, with the view to discovering appropriate molecular targets for the treatment of breast cancer, this paper analyzes the expressions of ZNF436, β-catenin, EGFR and CMTM5 in breast cancer tissues, as well as their correlations with breast cancer in combination with the clinicopathologic characteristics of studied patients. Immunohistochemistry (IHC) was utilized to detect the expression levels of ZNF436, β-catenin, EGFR and CMTM5 in cancerous and paracancerous tissues of breast cancer patients. The expression levels of ZNF436, β-Catenin and EGFR in breast cancer tissues were significantly greater than those in paracancerous tissues in this study (p<0.05), while CMTM5 was highly expressed in paracancerous tissues (p<0.05). Additionally, the correlation of the expressions of such indicators with the staging, differentiation and lymphatic metastasis of breast cancer, were also found to be statistically significant at the level p<0.05. The different expression levels of ZNF436, β-catenin, EGFR and CMTM5 in breast cancer and paracancerous tissues open up the possibility of utilizing them as molecular markers for breast cancer. These findings provide a theoretical basis for targeted molecular therapies for breast cancer, and hence carry a significant practical significance.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei.
| | - Na Cui
- Department of ICU, Affiliated Hospital of Hebei University, Baoding, Hebei.
| | - Ji-Sen Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Jian-Fei Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Fang Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Cong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| | - Xian-Yi Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei.
| |
Collapse
|
6
|
Li M, Luo F, Tian X, Yin S, Zhou L, Zheng S. Chemokine-Like Factor-Like MARVEL Transmembrane Domain-Containing Family in Hepatocellular Carcinoma: Latest Advances. Front Oncol 2020; 10:595973. [PMID: 33282744 PMCID: PMC7691587 DOI: 10.3389/fonc.2020.595973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) is a new gene family, consisting of CKLF and CMTM1 to CMTM8, which plays an important role in hematopoiesis system, autoimmune diseases, male reproduction etc. Abnormal expression of CMTMs is also associated with tumor genesis, development and metastasis. In this review, we briefly describe the characteristics of CMTM family, outline its functions in multiple kinds of carcinomas, and summarize the latest research on their roles in hepatocellular carcinoma which are mainly related to the expression, prognostic effect, potential functions, and mechanism of action. The CMTM family is expected to provide new ideas and targets for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengxia Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Fangzhou Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Xinyao Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| |
Collapse
|