1
|
Lin J, Huang C, Diao W, Liu H, Lu H, Huang S, Wang J. CPE correlates with poor prognosis in gastric cancer by promoting tumourigenesis. Heliyon 2024; 10:e29901. [PMID: 38694095 PMCID: PMC11058891 DOI: 10.1016/j.heliyon.2024.e29901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Aims To investigate the potential functions and mechanisms of tumourigenesis in carboxypeptidase E (CPE) and its prognostic value in gastric cancer, and to develop a predictive model for prognosis based on CPE. Results Transcriptome level variation and the prognostic value of CPE in different types of cancers were investigated using bioinformatics analyses. The association between CPE and clinicopathological characteristics was specifically explored in gastric cancer. Elevated CPE expression was associated with poor survival and recurrence prognosis and was found in cases with a later clinical stage of gastric cancer. The CPE was considered an independent prognostic factor, as assessed using Cox regression analysis. The prognostic value of CPE was further verified through immunohistochemistry and haematoxylin staining. Enrichment analysis provided a preliminary confirmation of the potential functions and mechanisms of CPE. Immune cell infiltration analysis revealed a significant correlation between CPE and macrophage infiltration. Eventually, a prognosis prediction nomogram model based on CPE was developed. Conclusion CPE was identified as an independent biomarker associated with poor prognosis in gastric cancer. This suggests that CPE overexpression promoted epithelial-mesenchymal transition via the activation of the Erk/Wnt pathways, leading to proliferation, invasion, and metastasis. Targeted therapeutic strategies for gastric cancer may benefit from these findings.
Collapse
Affiliation(s)
- Jiarui Lin
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515000, China
| | - Haoming Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hesong Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Shengchao Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
2
|
Minchenko OH, Abramchuk AI, Khita OO, Sliusar MY, Viletska YM, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of carboxypeptidase E expression in glioblastoma cells. Endocr Regul 2024; 58:206-214. [PMID: 39352777 DOI: 10.2478/enr-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Objective. Carboxypeptidase E (CPE) plays an important role in the biosynthesis of neurotransmitters and peptide hormones including insulin. It also promotes cell proliferation, survival, and invasion of tumor cells. The endoplasmic reticulum stress, hypoxia, and nutrient supply are significant factors of malignant tumor growth including glioblastoma. There are data indicating that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) suppressed glioblastoma cell proliferation and increased invasiveness of these cells. The present study aims to investigate the regulation of the CPE gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. Methods. Human glioblastoma cells U87MG (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine; for glucose and glutamine deprivations, the cells were cultured in DMEM medium without glucose or glutamine for 16 h, respectively. The expression level of the CPE gene was studied by quantitative RT-PCR and normalized to ACTB. Results. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to a strong up-regulation of CPE gene expression in glioblastoma cells. The expression of this gene also increased in glioblastoma cells after silencing ERN1. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the CPE gene was resistant to hypoxia in control U87MG cells, but increased in cells with ERN1 knockdown. The expression of this gene was up-regulated under glutamine deprivation in control glioblastoma cells, but decreased upon ERN1 knockdown. However, glucose deprivation decreased the expression of CPE gene in both types of used cells, but ERN1 inhibition enhanced this effect. Conclusion. The results of the present study demonstrate that inhibition of ERN1 strongly up-regulated the expression of pro-oncogenic CPE gene through protein kinase activity of ERN1 and that increased CPE gene expression possibly participates in ERN1 knockdown-mediated invasiveness of glioblastoma cells.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia I Abramchuk
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Hareendran S, Yang X, Sharma VK, Loh YP. Carboxypeptidase E and its splice variants: Key regulators of growth and metastasis in multiple cancer types. Cancer Lett 2022; 548:215882. [PMID: 35988818 PMCID: PMC9532369 DOI: 10.1016/j.canlet.2022.215882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Mechanisms driving tumor growth and metastasis are complex, and involve the recruitment of many genes working in concert with each other. The tumor is characterized by the expression of specific sets of genes depending on its environment. Here we review the role of the carboxypeptidase E (CPE) gene which has been shown to be important in driving growth, survival and metastasis in many cancer types. CPE was first discovered as a prohormone processing enzyme, enriched in endocrine tumors, and later found to be expressed and secreted from many epithelial-derived tumors and cancer cell lines. Numerous studies have shown that besides wild-type CPE, a N-terminal truncated splice variant form of CPE (CPE-ΔN) has been cloned and found to be highly expressed in malignant tumors and cell lines derived from prostate, breast, liver and lung cancers and gliomas. The mechanisms of action of CPE and the splice variant in promoting tumor growth and metastasis in different cancer types are discussed. Mechanistically, secreted CPE activates the Erk/wnt pathways, while CPE-ΔN interacts with HDACs in a protein complex in the nucleus, to recruit various cell cycle genes and metastatic genes, respectively. Clinical studies suggest that CPE and CPE-ΔN mRNA and protein are potential diagnostic and prognostic biomarkers for multiple cancer types, assayed using solid tumors and secreted serum exosomes. CPE has been shown to be a therapeutic target for multiple cancer types. CPE/CPE-ΔN siRNA transported via exosomes and taken up by recipient high metastatic cancer cells, suppressed growth and proliferation of these cells. Thus future studies, delivering CPE/CPE-ΔN siRNA, perhaps via exosomes, to the tumor could be a novel treatment approach to suppress tumor growth and metastasis.
Collapse
Affiliation(s)
- Sangeetha Hareendran
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
4
|
LncRNA BACE1-AS promotes the progression of osteosarcoma through miR-762/SOX7 axis. Mol Biol Rep 2022; 49:5853-5862. [PMID: 35332412 DOI: 10.1007/s11033-022-07364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone that occurs in adolescents and children. LncRNAs are important regulators of tumorigenesis and development. This study aimed to explore the role and molecular basis of LncRNA BACE1-AS (BACE1 antisense RNA) in OS. METHODS AND RESULTS Through the analysis of differential expressed lncRNAs in OS tissues by GEO database, LncRNA BACE1-AS display a remarkably lower expression. This found can also be observed in both OS tissues and cell lines by qRT-PCR. Furthermore, using Cell counting kit-8 (CCK-8), transwell, wound healing and westernblot assays, overexpression LncRNA BACE1-AS remarkably reduce cell proliferation, migration and invasion abilities in OS. In addition, LncRNA BACE1-AS is validated as a sponge of miR-762 through the prediction of lncRNASNP. Further, luciferase reporter and RIP assays are conducted to confirm the binding sites between LncRNA BACE1-AS and miR-762. SRY-box transcription factor 7 (SOX7) target to miR-762 and regulated by LncRNA BACE1-AS. Moreover, inhibition of miR-762 attenuate the role of sh-LncRNA BACE1-AS in OS cells, at meanwhile reduce the expression of SOX7. CONCLUSION In this study, LncRNA BACE1-AS regulates proliferation, migration and invasion of osteosarcoma cells by miR-762/SOX7 axis, implying that LncRNA BACE1-AS is a potential target for osteosarcoma therapy.
Collapse
|
5
|
Exosomal Carboxypeptidase E (CPE) and CPE-shRNA-Loaded Exosomes Regulate Metastatic Phenotype of Tumor Cells. Int J Mol Sci 2022; 23:ijms23063113. [PMID: 35328535 PMCID: PMC8953963 DOI: 10.3390/ijms23063113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Exosomes promote tumor growth and metastasis through intercellular communication, although the mechanism remains elusive. Carboxypeptidase E (CPE) supports the progression of different cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether CPE is the bioactive cargo within exosomes, and whether it contributes to tumorigenesis, using HCC cell lines as a cancer model. Methods: Exosomes were isolated from supernatant media of cancer cells, or human sera. mRNA and protein expression were analyzed using PCR and Western blot. Low-metastatic HCC97L cells were incubated with exosomes derived from high-metastatic HCC97H cells. In other experiments, HCC97H cells were incubated with CPE-shRNA-loaded exosomes. Cell proliferation and invasion were assessed using MTT, colony formation, and matrigel invasion assays. Results: Exosomes released from cancer cells contain CPE mRNA and protein. CPE mRNA levels are enriched in exosomes secreted from high- versus low-metastastic cells, across various cancer types. In a pilot study, significantly higher CPE copy numbers were found in serum exosomes from cancer patients compared to healthy subjects. HCC97L cells, treated with exosomes derived from HCC97H cells, displayed enhanced proliferation and invasion; however, exosomes from HCC97H cells pre-treated with CPE-shRNA failed to promote proliferation. When HEK293T exosomes loaded with CPE-shRNA were incubated with HCC97H cells, the expression of CPE, Cyclin D1, a cell-cycle regulatory protein and c-myc, a proto-oncogene, were suppressed, resulting in the diminished proliferation of HCC97H cells. Conclusions: We identified CPE as an exosomal bioactive molecule driving the growth and invasion of low-metastatic HCC cells. CPE-shRNA loaded exosomes can inhibit malignant tumor cell proliferation via Cyclin D1 and c-MYC suppression. Thus, CPE is a key player in the exosome transmission of tumorigenesis, and the exosome-based delivery of CPE-shRNA offers a potential treatment for tumor progression. Notably, measuring CPE transcript levels in serum exosomes from cancer patients could have potential liquid biopsy applications.
Collapse
|