1
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, Zhu N, Yang J. Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol 2023; 121:110422. [PMID: 37302370 DOI: 10.1016/j.intimp.2023.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. It is characterized by a rapid progression, poor prognosis, and early pulmonary metastasis. Over the past 30 years, approximately 85% of patients with osteosarcoma have experienced metastasis. The five-year survival of patients with lung metastasis during the early stages of treatment is less than 20%. The tumor microenvironment (TME) not only provides conditions for tumor cell growth but also releases a variety of substances that can promote the metastasis of tumor cells to other tissues and organs. Currently, there is limited research on the role of the TME in osteosarcoma metastasis. Therefore, to explore methods for regulating osteosarcoma metastasis, further investigations must be conducted from the perspective of the TME. This will help to identify new potential biomarkers for predicting osteosarcoma metastasis and assist in the discovery of new drugs that target regulatory mechanisms for clinical diagnosis and treatment. This paper reviews the research progress on the mechanism of osteosarcoma metastasis based on TME theory, which will provide guidance for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Xinyi Zhong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingying Su
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Mingchuan Lu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yifen Ma
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Zihe Li
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China
| | - Ningxia Zhu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Hu D, Zheng Y, Ou X, Zhang L, Du X, Shi S. Integrated analysis of anti-tumor roles of BAP1 in osteosarcoma. Front Oncol 2022; 12:973914. [PMID: 36003792 PMCID: PMC9393745 DOI: 10.3389/fonc.2022.973914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aims to screen out differentially expressed genes (DEGs) regulated by BRCA1-associated protein 1 (BAP1) in osteosarcoma cells, and to analyze their biological functions. Methods The microarray dataset GSE23035 of BAP1-knockdown osteosarcoma cells was obtained from Gene Expression Omnibus (GEO) database, consisting of shControl, shBAP1#1 and shBAP1#2 samples. The DEGs between the BAP1-knockdown osteosarcoma cells and the untreated osteosarcoma cells were screened with limma package, and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene Set Enrichment Analysis (GSEA) was also performed for the three groups of samples. Hub genes in a protein-protein interaction (PPI) network of DEGs was filtered, and then subjected to prognostic analysis and correlation analysis with BAP1 in Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Besides, the correlation between BAP1 and biological processes/pathways was analyzed by Gene Set Variation Analysis (GSVA) method and the correlation between BAP1 and immune infiltration by CIBERSORT and ESTIMATE methods. The roles of BAP1 in regulating proliferation and epithelial-mesenchymal transition (EMT) were validated by CCK-8 and western blot. Results 58 upregulated DEGs and 81 downregulated DEGs were obtained with |logFC| ≥ 1 and adj.p < 0.05. Cell cycle, DNA repair, and focal adhesion were associated with BAP1 in datasets. Further, BAP1 was negatively correlated with naïve CD4 T cells infiltration. In vitro, BAP1 inhibited proliferation and EMT. Conclusion BAP1 might be a tumor suppressor in osteosarcoma and a promising therapeutic target.
Collapse
|