1
|
Jin F, Bruijn SM, Daffertshofer A. Machine learning approaches to predict whether MEPs can be elicited via TMS. J Neurosci Methods 2024; 410:110242. [PMID: 39127350 DOI: 10.1016/j.jneumeth.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs. NEW METHOD We sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs. RESULTS We obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs. CONCLUSIONS Although within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.
Collapse
Affiliation(s)
- Fang Jin
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Wang J, He Y. Toward individualized connectomes of brain morphology. Trends Neurosci 2024; 47:106-119. [PMID: 38142204 DOI: 10.1016/j.tins.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The morphological brain connectome (MBC) delineates the coordinated patterns of local morphological features (such as cortical thickness) across brain regions. While classically constructed using population-based approaches, there is a growing trend toward individualized modeling. Currently, the methods for individualized MBCs are varied, posing challenges for method selection and cross-study comparisons. Here, we summarize how individualized MBCs are modeled through low-order methods (correlation-, divergence-, distance-, and deviation-based methods) describing relations in brain morphology, as well as high-order methods capturing similarities in these low-order relations. We discuss the merits and limitations of different methods, examining them in the context of robustness, reproducibility, and reliability. We highlight the importance of elucidating the cellular and molecular mechanisms underlying the individualized connectome, and establishing normative benchmarks to assess individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
4
|
Yang Y, Li J, Li T, Li Z, Zhuo Z, Han X, Duan Y, Cao G, Zheng F, Tian D, Wang X, Zhang X, Li K, Zhou F, Huang M, Li Y, Li H, Li Y, Zeng C, Zhang N, Sun J, Yu C, Shi F, Asgher U, Muhlert N, Liu Y, Wang J. Cerebellar connectome alterations and associated genetic signatures in multiple sclerosis and neuromyelitis optica spectrum disorder. J Transl Med 2023; 21:352. [PMID: 37245044 DOI: 10.1186/s12967-023-04164-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/26/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND The cerebellum plays key roles in the pathology of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), but the way in which these conditions affect how the cerebellum communicates with the rest of the brain (its connectome) and associated genetic correlates remains largely unknown. METHODS Combining multimodal MRI data from 208 MS patients, 200 NMOSD patients and 228 healthy controls and brain-wide transcriptional data, this study characterized convergent and divergent alterations in within-cerebellar and cerebello-cerebral morphological and functional connectivity in MS and NMOSD, and further explored the association between the connectivity alterations and gene expression profiles. RESULTS Despite numerous common alterations in the two conditions, diagnosis-specific increases in cerebellar morphological connectivity were found in MS within the cerebellar secondary motor module, and in NMOSD between cerebellar primary motor module and cerebral motor- and sensory-related areas. Both diseases also exhibited decreased functional connectivity between cerebellar motor modules and cerebral association cortices with MS-specific decreases within cerebellar secondary motor module and NMOSD-specific decreases between cerebellar motor modules and cerebral limbic and default-mode regions. Transcriptional data explained > 37.5% variance of the cerebellar functional alterations in MS with the most correlated genes enriched in signaling and ion transport-related processes and preferentially located in excitatory and inhibitory neurons. For NMOSD, similar results were found but with the most correlated genes also preferentially located in astrocytes and microglia. Finally, we showed that cerebellar connectivity can help distinguish the three groups from each other with morphological connectivity as predominant features for differentiating the patients from controls while functional connectivity for discriminating the two diseases. CONCLUSIONS We demonstrate convergent and divergent cerebellar connectome alterations and associated transcriptomic signatures between MS and NMOSD, providing insight into shared and unique neurobiological mechanisms underlying these two diseases.
Collapse
Affiliation(s)
- Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China
| | - Ting Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China
| | - Zhen Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Fenglian Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Decai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinli Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinghu Zhang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fudong Shi
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Umer Asgher
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, The West Southern 4th Ring Road, Fengtai District, Beijing, 100070, China.
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Subramanyam Rallabandi V, Seetharaman K. Deep learning-based classification of healthy aging controls, mild cognitive impairment and Alzheimer’s disease using fusion of MRI-PET imaging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Li Y, Fang Y, Wang J, Zhang H, Hu B. Biomarker Extraction Based on Subspace Learning for the Prediction of Mild Cognitive Impairment Conversion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5531940. [PMID: 34513992 PMCID: PMC8429015 DOI: 10.1155/2021/5531940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023]
Abstract
Accurate recognition of progressive mild cognitive impairment (MCI) is helpful to reduce the risk of developing Alzheimer's disease (AD). However, it is still challenging to extract effective biomarkers from multivariate brain structural magnetic resonance imaging (MRI) features to accurately differentiate the progressive MCI from stable MCI. We develop novel biomarkers by combining subspace learning methods with the information of AD as well as normal control (NC) subjects for the prediction of MCI conversion using multivariate structural MRI data. Specifically, we first learn two projection matrices to map multivariate structural MRI data into a common label subspace for AD and NC subjects, where the original data structure and the one-to-one correspondence between multiple variables are kept as much as possible. Afterwards, the multivariate structural MRI features of MCI subjects are mapped into a common subspace according to the projection matrices. We then perform the self-weighted operation and weighted fusion on the features in common subspace to extract the novel biomarkers for MCI subjects. The proposed biomarkers are tested on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results indicate that our proposed biomarkers outperform the competing biomarkers on the discrimination between progressive MCI and stable MCI. And the improvement from the proposed biomarkers is not limited to a particular classifier. Moreover, the results also confirm that the information of AD and NC subjects is conducive to predicting conversion from MCI to AD. In conclusion, we find a good representation of brain features from high-dimensional MRI data, which exhibits promising performance for predicting conversion from MCI to AD.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of TCM Data Cloud Service in Universities of Shandong, Shandong Management University, Jinan 250357, China
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
| | - Yixian Fang
- School of Mathematics and Statistics, Qilu University of Technology, Jinan 250353, China
| | | | - Huaxiang Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
| | - Bin Hu
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, Zheng Y, Liu Y, Li S. Regional radiomics similarity networks (R2SNs) in the human brain: Reproducibility, small-world properties and a biological basis. Netw Neurosci 2021; 5:783-797. [PMID: 34746627 PMCID: PMC8567836 DOI: 10.1162/netn_a_00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
A structural covariance network (SCN) has been used successfully in structural magnetic resonance imaging (sMRI) studies. However, most SCNs have been constructed by a unitary marker that is insensitive for discriminating different disease phases. The aim of this study was to devise a novel regional radiomics similarity network (R2SN) that could provide more comprehensive information in morphological network analysis. R2SNs were constructed by computing the Pearson correlations between the radiomics features extracted from any pair of regions for each subject (AAL atlas). We further assessed the small-world property of R2SNs, and we evaluated the reproducibility in different datasets and through test-retest analysis. The relationships between the R2SNs and general intelligence/interregional coexpression of genes were also explored. R2SNs could be replicated in different datasets, regardless of the use of different feature subsets. R2SNs showed high reproducibility in the test-retest analysis (intraclass correlation coefficient > 0.7). In addition, the small-word property (σ > 2) and the high correlation between gene expression (R = 0.29, p < 0.001) and general intelligence were determined for R2SNs. Furthermore, the results have also been repeated in the Brainnetome atlas. R2SNs provide a novel, reliable, and biologically plausible method to understand human morphological covariance based on sMRI.
Collapse
Affiliation(s)
- Kun Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Tongtong Che
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Qiongling Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
8
|
Zheng W, Zhao Z, Zhang Z, Liu T, Zhang Y, Fan J, Wu D. Developmental pattern of the cortical topology in high-functioning individuals with autism spectrum disorder. Hum Brain Mapp 2020; 42:660-675. [PMID: 33085836 PMCID: PMC7814766 DOI: 10.1002/hbm.25251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
A number of studies have indicated alterations of brain morphology in individuals with autism spectrum disorder (ASD); however, how ASD influences the topological organization of the brain cortex at different developmental stages is not yet well characterized. In this study, we used structural images of 492 high‐functioning participants in the Autism Brain Imaging Data Exchange database acquired from 17 international imaging centers, including 75 autistic children (age 7–11 years), 91 adolescents with ASD (age 12–17 years), and 80 young adults with ASD (age 18–29 years), and 246 typically developing controls (TDCs) that were age, gender, handedness, and full‐scale IQ matched. Cortical thickness (CT) and surface area (SA) were extracted and the covariance between cortical regions across participants were treated as a network to examine developmental patterns of the cortical topological organization at different stages. A center‐paired resampling strategy was developed to control the center bias during the permutation test. Compared with the TDCs, network of SA (but not CT) of individuals with ASD showed reduced small‐worldness in childhood, and the network hubs were reorganized in the adulthood such that hubs inclined to connect with nonhub nodes and demonstrated more dispersed spatial distribution. Furthermore, the SA network of the ASD cohort exhibited increased segregation of the inferior parietal lobule and prefrontal cortex, and insular‐opercular cortex in all three age groups, resulting in the emergence of two unique modules in the autistic brain. Our findings suggested that individuals with ASD may undergo remarkable remodeling of the cortical topology from childhood to adulthood, which may be associated with the altered social and cognitive functions in ASD.
Collapse
Affiliation(s)
- Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, New York, New York, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Gupta Y, Kim JI, Kim BC, Kwon GR. Classification and Graphical Analysis of Alzheimer's Disease and Its Prodromal Stage Using Multimodal Features From Structural, Diffusion, and Functional Neuroimaging Data and the APOE Genotype. Front Aging Neurosci 2020; 12:238. [PMID: 32848713 PMCID: PMC7406801 DOI: 10.3389/fnagi.2020.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Graphical, voxel, and region-based analysis has become a popular approach to studying neurodegenerative disorders such as Alzheimer's disease (AD) and its prodromal stage [mild cognitive impairment (MCI)]. These methods have been used previously for classification or discrimination of AD in subjects in a prodromal stage called stable MCI (MCIs), which does not convert to AD but remains stable over a period of time, and converting MCI (MCIc), which converts to AD, but the results reported across similar studies are often inconsistent. Furthermore, the classification accuracy for MCIs vs. MCIc is limited. In this study, we propose combining different neuroimaging modalities (sMRI, FDG-PET, AV45-PET, DTI, and rs-fMRI) with the apolipoprotein-E genotype to form a multimodal system for the discrimination of AD, and to increase the classification accuracy. Initially, we used two well-known analyses to extract features from each neuroimage for the discrimination of AD: whole-brain parcelation analysis (or region-based analysis), and voxel-wise analysis (or voxel-based morphometry). We also investigated graphical analysis (nodal and group) for all six binary classification groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs). Data for a total of 129 subjects (33 AD, 30 MCIs, 31 MCIc, and 35 HCs) for each imaging modality were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) homepage. These data also include two APOE genotype data points for the subjects. Moreover, we used the 2-mm AICHA atlas with the NiftyReg registration toolbox to extract 384 brain regions from each PET (FDG and AV45) and sMRI image. For the rs-fMRI images, we used the DPARSF toolbox in MATLAB for the automatic extraction of data and the results for REHO, ALFF, and fALFF. We also used the pyClusterROI script for the automatic parcelation of each rs-fMRI image into 200 brain regions. For the DTI images, we used the FSL (Version 6.0) toolbox for the extraction of fractional anisotropy (FA) images to calculate a tract-based spatial statistic. Moreover, we used the PANDA toolbox to obtain 50 white-matter-region-parcellated FA images on the basis of the 2-mm JHU-ICBM-labeled template atlas. To integrate the different modalities and different complementary information into one form, and to optimize the classifier, we used the multiple kernel learning (MKL) framework. The obtained results indicated that our multimodal approach yields a significant improvement in accuracy over any single modality alone. The areas under the curve obtained by the proposed method were 97.78, 96.94, 95.56, 96.25, 96.67, and 96.59% for AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs binary classification, respectively. Our proposed multimodal method improved the classification result for MCIs vs. MCIc groups compared with the unimodal classification results. Our study found that the (left/right) precentral region was present in all six binary classification groups (this region can be considered the most significant region). Furthermore, using nodal network topology, we found that FDG, AV45-PET, and rs-fMRI were the most important neuroimages, and showed many affected regions relative to other modalities. We also compared our results with recently published results.
Collapse
Affiliation(s)
- Yubraj Gupta
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| | - Ji-In Kim
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| | - Byeong Chae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Goo-Rak Kwon
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| |
Collapse
|
11
|
Gao Z, Feng Y, Ma C, Ma K, Cai Q, and for the Alzheimer’s Disease Neuroimaging Initiative. Disrupted Time-Dependent and Functional Connectivity Brain Network in Alzheimer's Disease: A Resting-State fMRI Study Based on Visibility Graph. Curr Alzheimer Res 2020; 17:69-79. [DOI: 10.2174/1567205017666200213100607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Background:
Alzheimer's Disease (AD) is a progressive neurodegenerative disease with insidious
onset, which is difficult to be reversed and cured. Therefore, discovering more precise biological
information from neuroimaging biomarkers is crucial for accurate and automatic detection of AD.
Methods:
We innovatively used a Visibility Graph (VG) to construct the time-dependent brain networks
as well as functional connectivity network to investigate the underlying dynamics of AD brain based on
functional magnetic resonance imaging. There were 32 AD patients and 29 Normal Controls (NCs) from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, the VG method mapped the
time series of single brain region into networks. By extracting topological properties of the networks, the
most significant features were selected as discriminant features into a supporting vector machine for
classification. Furthermore, in order to detect abnormalities of these brain regions in the whole AD
brain, functional connectivity among different brain regions was calculated based on the correlation of
regional degree sequences.
Results:
According to the topology abnormalities exploration of local complex networks, we found several
abnormal brain regions, including left insular, right posterior cingulate gyrus and other cortical regions.
The accuracy of characteristics of the brain regions extracted from local complex networks was
88.52%. Association analysis demonstrated that the left inferior opercular part of frontal gyrus, right
middle occipital gyrus, right superior parietal gyrus and right precuneus played a tremendous role in
AD.
Conclusion:
These results would be helpful in revealing the underlying pathological mechanism of the
disease.
Collapse
Affiliation(s)
- Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yanhua Feng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Chao Ma
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Kai Ma
- Principal Researcher at Tencent, Guangdong, China
| | - Qing Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | | |
Collapse
|
12
|
Lombardi G, Crescioli G, Cavedo E, Lucenteforte E, Casazza G, Bellatorre A, Lista C, Costantino G, Frisoni G, Virgili G, Filippini G. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Cochrane Database Syst Rev 2020; 3:CD009628. [PMID: 32119112 PMCID: PMC7059964 DOI: 10.1002/14651858.cd009628.pub2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) due to Alzheimer's disease is the symptomatic predementia phase of Alzheimer's disease dementia, characterised by cognitive and functional impairment not severe enough to fulfil the criteria for dementia. In clinical samples, people with amnestic MCI are at high risk of developing Alzheimer's disease dementia, with annual rates of progression from MCI to Alzheimer's disease estimated at approximately 10% to 15% compared with the base incidence rates of Alzheimer's disease dementia of 1% to 2% per year. OBJECTIVES To assess the diagnostic accuracy of structural magnetic resonance imaging (MRI) for the early diagnosis of dementia due to Alzheimer's disease in people with MCI versus the clinical follow-up diagnosis of Alzheimer's disease dementia as a reference standard (delayed verification). To investigate sources of heterogeneity in accuracy, such as the use of qualitative visual assessment or quantitative volumetric measurements, including manual or automatic (MRI) techniques, or the length of follow-up, and age of participants. MRI was evaluated as an add-on test in addition to clinical diagnosis of MCI to improve early diagnosis of dementia due to Alzheimer's disease in people with MCI. SEARCH METHODS On 29 January 2019 we searched Cochrane Dementia and Cognitive Improvement's Specialised Register and the databases, MEDLINE, Embase, BIOSIS Previews, Science Citation Index, PsycINFO, and LILACS. We also searched the reference lists of all eligible studies identified by the electronic searches. SELECTION CRITERIA We considered cohort studies of any size that included prospectively recruited people of any age with a diagnosis of MCI. We included studies that compared the diagnostic test accuracy of baseline structural MRI versus the clinical follow-up diagnosis of Alzheimer's disease dementia (delayed verification). We did not exclude studies on the basis of length of follow-up. We included studies that used either qualitative visual assessment or quantitative volumetric measurements of MRI to detect atrophy in the whole brain or in specific brain regions, such as the hippocampus, medial temporal lobe, lateral ventricles, entorhinal cortex, medial temporal gyrus, lateral temporal lobe, amygdala, and cortical grey matter. DATA COLLECTION AND ANALYSIS Four teams of two review authors each independently reviewed titles and abstracts of articles identified by the search strategy. Two teams of two review authors each independently assessed the selected full-text articles for eligibility, extracted data and solved disagreements by consensus. Two review authors independently assessed the quality of studies using the QUADAS-2 tool. We used the hierarchical summary receiver operating characteristic (HSROC) model to fit summary ROC curves and to obtain overall measures of relative accuracy in subgroup analyses. We also used these models to obtain pooled estimates of sensitivity and specificity when sufficient data sets were available. MAIN RESULTS We included 33 studies, published from 1999 to 2019, with 3935 participants of whom 1341 (34%) progressed to Alzheimer's disease dementia and 2594 (66%) did not. Of the participants who did not progress to Alzheimer's disease dementia, 2561 (99%) remained stable MCI and 33 (1%) progressed to other types of dementia. The median proportion of women was 53% and the mean age of participants ranged from 63 to 87 years (median 73 years). The mean length of clinical follow-up ranged from 1 to 7.6 years (median 2 years). Most studies were of poor methodological quality due to risk of bias for participant selection or the index test, or both. Most of the included studies reported data on the volume of the total hippocampus (pooled mean sensitivity 0.73 (95% confidence interval (CI) 0.64 to 0.80); pooled mean specificity 0.71 (95% CI 0.65 to 0.77); 22 studies, 2209 participants). This evidence was of low certainty due to risk of bias and inconsistency. Seven studies reported data on the atrophy of the medial temporal lobe (mean sensitivity 0.64 (95% CI 0.53 to 0.73); mean specificity 0.65 (95% CI 0.51 to 0.76); 1077 participants) and five studies on the volume of the lateral ventricles (mean sensitivity 0.57 (95% CI 0.49 to 0.65); mean specificity 0.64 (95% CI 0.59 to 0.70); 1077 participants). This evidence was of moderate certainty due to risk of bias. Four studies with 529 participants analysed the volume of the total entorhinal cortex and four studies with 424 participants analysed the volume of the whole brain. We did not estimate pooled sensitivity and specificity for the volume of these two regions because available data were sparse and heterogeneous. We could not statistically evaluate the volumes of the lateral temporal lobe, amygdala, medial temporal gyrus, or cortical grey matter assessed in small individual studies. We found no evidence of a difference between studies in the accuracy of the total hippocampal volume with regards to duration of follow-up or age of participants, but the manual MRI technique was superior to automatic techniques in mixed (mostly indirect) comparisons. We did not assess the relative accuracy of the volumes of different brain regions measured by MRI because only indirect comparisons were available, studies were heterogeneous, and the overall accuracy of all regions was moderate. AUTHORS' CONCLUSIONS The volume of hippocampus or medial temporal lobe, the most studied brain regions, showed low sensitivity and specificity and did not qualify structural MRI as a stand-alone add-on test for an early diagnosis of dementia due to Alzheimer's disease in people with MCI. This is consistent with international guidelines, which recommend imaging to exclude non-degenerative or surgical causes of cognitive impairment and not to diagnose dementia due to Alzheimer's disease. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Future research should not focus on a single biomarker, but rather on combinations of biomarkers to improve an early diagnosis of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Gemma Lombardi
- University of FlorenceDepartment of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA)Largo Brambilla, 3FlorenceItaly50134
| | - Giada Crescioli
- University of FlorenceDepartment of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA)Largo Brambilla, 3FlorenceItaly50134
| | - Enrica Cavedo
- Pitie‐Salpetriere Hospital, Sorbonne UniversityAlzheimer Precision Medicine (APM), AP‐HP47 boulevard de l'HopitalParisFrance75013
| | - Ersilia Lucenteforte
- University of PisaDepartment of Clinical and Experimental MedicineVia Savi 10PisaItaly56126
| | - Giovanni Casazza
- Università degli Studi di MilanoDipartimento di Scienze Biomediche e Cliniche "L. Sacco"via GB Grassi 74MilanItaly20157
| | | | - Chiara Lista
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo BestaNeuroepidemiology UnitVia Celoria, 11MilanoItaly20133
| | - Giorgio Costantino
- Ospedale Maggiore Policlinico, Università degli Studi di MilanoUOC Pronto Soccorso e Medicina D'Urgenza, Fondazione IRCCS Ca' GrandaMilanItaly
| | | | - Gianni Virgili
- University of FlorenceDepartment of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA)Largo Brambilla, 3FlorenceItaly50134
| | - Graziella Filippini
- Carlo Besta Foundation and Neurological InstituteScientific Director’s Officevia Celoria, 11MilanItaly20133
| | | |
Collapse
|
13
|
Sun P, Lou W, Liu J, Shi L, Li K, Wang D, Mok VC, Liang P. Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study. Aging (Albany NY) 2019; 11:10000-10015. [PMID: 31756169 PMCID: PMC6914405 DOI: 10.18632/aging.102362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/05/2019] [Indexed: 01/26/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as a transitional stage between the expected cognitive decline of normal aging and Alzheimer’s disease (AD). Structural brain difference has shown the potential in cognitive related diagnosis, however cortical thickness patterns transferred from aMCI to AD, especially in the subtypes of aMCI, is still unclear. In this study, we investigated the cortical thickness discrepancies among AD, aMCI and normal control (NC) entities, especially for two subtypes of aMCI - multiple-domain aMCI (aMCI-m) and single-domain aMCI (aMCI-s). Both region of interest (ROI)-based and vertex-based statistical strategies were performed for group-level cortical thickness comparison. Spearman correlation was utilized to identify the correlation between cortical thickness and clinical neuropsychological scores. The result demonstrated that there was a significant cortical thickness decreasing tendency in fusiform gyrus from NC to aMCI-s to aMCI-m to finally AD in both left and right hemispheres. Meanwhile, the two subtypes of aMCI showed cortical thickness difference in middle temporal gyrus in left hemisphere. Spearman correlation indicated that neuropsychological scores had significant correlations with entorhinal, inferior temporal and middle temporal gyrus. The findings suggested that cortical thickness might serve as a potential imaging biomarker for the differential diagnosis of cognitive impairment.
Collapse
Affiliation(s)
- Pan Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Research Institute, Shenzhen, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Lab of MRI and Brain Informatics, Beijing, China
| | - Defeng Wang
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| | - Peipeng Liang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Zheng W, Yao Z, Li Y, Zhang Y, Hu B, Wu D. Brain Connectivity Based Prediction of Alzheimer's Disease in Patients With Mild Cognitive Impairment Based on Multi-Modal Images. Front Hum Neurosci 2019; 13:399. [PMID: 31803034 PMCID: PMC6873164 DOI: 10.3389/fnhum.2019.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Structural and metabolic connectivity are advanced features that facilitate the diagnosis of patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Connectivity from a single imaging modality, however, did not show evident discriminative value in predicting MCI-to-AD conversion, possibly because the inter-modal information was not considered when quantifying the relationship between brain regions. Here we introduce a novel approach that extracts connectivity based on both structural and metabolic information to improve AD early diagnosis. Principal component analysis was performed on each imaging modality to extract the key discriminative patterns of each brain region in an independent auxiliary domain composed of AD and normal control (NC) subjects, which were then used to project the two subtypes of MCI to the low-dimensional space. The connectivity between each target brain region and all other regions was quantified via a multi-task regression model using the projected data. The prediction performance was evaluated in 75 stable MCI (sMCI) patients and 51 progressive MCI (pMCI) patients who converted to AD within 3 years. We achieved 79.37% accuracy, with 74.51% sensitivity and 82.67% specificity, in predicting MCI-to-AD progression, superior to other existing algorithms using either structural and metabolic connectivities alone or a combination thereof. Our results demonstrate the effectiveness of multi-modal connectivity, serving as robust biomarker for early AD diagnosis.
Collapse
Affiliation(s)
- Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Yao
- School of Information Science & Engineering, Lanzhou University, Lanzhou, China
| | - Yongchao Li
- School of Information Science & Engineering, Lanzhou University, Lanzhou, China
| | - Yi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Bin Hu
- School of Information Science & Engineering, Lanzhou University, Lanzhou, China
| | - Dan Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | | |
Collapse
|
15
|
Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR. Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. PLoS One 2019; 14:e0222446. [PMID: 31584953 PMCID: PMC6777799 DOI: 10.1371/journal.pone.0222446] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/30/2019] [Indexed: 11/28/2022] Open
Abstract
In recent years, several high-dimensional, accurate, and effective classification methods have been proposed for the automatic discrimination of the subject between Alzheimer's disease (AD) or its prodromal phase {i.e., mild cognitive impairment (MCI)} and healthy control (HC) persons based on T1-weighted structural magnetic resonance imaging (sMRI). These methods emphasis only on using the individual feature from sMRI images for the classification of AD, MCI, and HC subjects and their achieved classification accuracy is low. However, latest multimodal studies have shown that combining multiple features from different sMRI analysis techniques can improve the classification accuracy for these types of subjects. In this paper, we propose a novel classification technique that precisely distinguishes individuals with AD, aAD (stable MCI, who had not converted to AD within a 36-month time period), and mAD (MCI caused by AD, who had converted to AD within a 36-month time period) from HC individuals. The proposed method combines three different features extracted from structural MR (sMR) images using voxel-based morphometry (VBM), hippocampal volume (HV), and cortical and subcortical segmented region techniques. Three classification experiments were performed (AD vs. HC, aAD vs. mAD, and HC vs. mAD) with 326 subjects (171 elderly controls and 81 AD, 35 aAD, and 39 mAD patients). For the development and validation of the proposed classification method, we acquired the sMR images from the dataset of the National Research Center for Dementia (NRCD). A five-fold cross-validation technique was applied to find the optimal hyperparameters for the classifier, and the classification performance was compared by using three well-known classifiers: K-nearest neighbor, support vector machine, and random forest. Overall, the proposed model with the SVM classifier achieved the best performance on the NRCD dataset. For the individual feature, the VBM technique provided the best results followed by the HV technique. However, the use of combined features improved the classification accuracy and predictive power for the early classification of AD compared to the use of individual features. The most stable and reliable classification results were achieved when combining all extracted features. Additionally, to analyze the efficiency of the proposed model, we used the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to compare the classification performance of the proposed model with those of several state-of-the-art methods.
Collapse
Affiliation(s)
- Yubraj Gupta
- School of Information Communication Engineering, Chosun University, Gwangju, Republic of Korea
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | - Jang Jae Lee
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | - Byeong Chae Kim
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Goo Rak Kwon
- School of Information Communication Engineering, Chosun University, Gwangju, Republic of Korea
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | | | | |
Collapse
|
16
|
Zhang T, Zhao Z, Zhang C, Zhang J, Jin Z, Li L. Classification of Early and Late Mild Cognitive Impairment Using Functional Brain Network of Resting-State fMRI. Front Psychiatry 2019; 10:572. [PMID: 31555157 PMCID: PMC6727827 DOI: 10.3389/fpsyt.2019.00572] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Using the Pearson correlation coefficient to constructing functional brain network has been evidenced to be an effective means to diagnose different stages of mild cognitive impairment (MCI) disease. In this study, we investigated the efficacy of a classification framework to distinguish early mild cognitive impairment (EMCI) from late mild cognitive impairment (LMCI) by using the effective features derived from functional brain network of three frequency bands (full-band: 0.01-0.08 Hz; slow-4: 0.027-0.08 Hz; slow-5: 0.01-0.027 Hz) at Rest. Graphic theory was performed to calculate and analyze the relationship between changes in network connectivity. Subsequently, three different algorithms [minimal redundancy maximal relevance (mRMR), sparse linear regression feature selection algorithm based on stationary selection (SS-LR), and Fisher Score (FS)] were applied to select the features of network attributes, respectively. Finally, we used the support vector machine (SVM) with nested cross validation to classify the samples into two categories to obtain unbiased results. Our results showed that the global efficiency, the local efficiency, and the average clustering coefficient were significantly higher in the slow-5 band for the LMCI-EMCI comparison, while the characteristic path length was significantly longer under most threshold values. The classification results showed that the features selected by the mRMR algorithm have higher classification performance than those selected by the SS-LR and FS algorithms. The classification results obtained by using mRMR algorithm in slow-5 band are the best, with 83.87% accuracy (ACC), 86.21% sensitivity (SEN), 81.21% specificity (SPE), and the area under receiver operating characteristic curve (AUC) of 0.905. The present results suggest that the method we proposed could effectively help diagnose MCI disease in clinic and predict its conversion to Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Ray PP, Dash D, De D. A Systematic Review and Implementation of IoT-Based Pervasive Sensor-Enabled Tracking System for Dementia Patients. J Med Syst 2019; 43:287. [PMID: 31317281 DOI: 10.1007/s10916-019-1417-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023]
Abstract
In today's world, 46.8 million people suffer from brain related diseases. Dementia is most prevalent of all. In general scenario, a dementia patient lacks proper guidance in searching out the way to return back at his/her home. Thus, increasing the risk of getting damaged at individual-health level. Therefore, it is important to track their movement in more sophisticated manner as possible. With emergence of wearables, GPS sensors and Internet of Things (IoT), such devices have become available in public domain. Smartphone apps support caregiver to locate the dementia patients in real-time. RF, GSM, 3G, Wi-Fi and 4G technology fill the communication gap between patient and caregiver to bring them closer. In this paper, we incorporated 7 most popular wearables for investigation to seek appropriateness for dementia tracking in recent times in systematic manners. We performed an in-depth review of these wearables as per the cost, technology wise and application wise characteristics. A case novel study i.e. IoT-based Force Sensor Resistance enabled System-FSRIoT, has been proposed and implemented to validate the effectiveness of IoT in the domain of smarter dementia patient tracking in wearable form factor. The results show promising aspect of a whole new notion to leverage efficient assistive physio-medical healthcare to the dementia patients and the affected family members to reduce life risks and achieve a better social life.
Collapse
Affiliation(s)
- Partha Pratim Ray
- Department of Computer Applications, Sikkim University, Gangtok, India.
| | - Dinesh Dash
- Department of Computer Science and Engineering, NIT Patna, Patna, India
| | - Debashis De
- Department of Computer Science and Engineering, MAKAUT, Kolkata, India
| |
Collapse
|
18
|
Yang H, Xu H, Li Q, Jin Y, Jiang W, Wang J, Wu Y, Li W, Yang C, Li X, Xiao S, Shi F, Wang T. Study of brain morphology change in Alzheimer's disease and amnestic mild cognitive impairment compared with normal controls. Gen Psychiatr 2019; 32:e100005. [PMID: 31179429 PMCID: PMC6551438 DOI: 10.1136/gpsych-2018-100005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background With an aggravated social ageing level, the number of patients with Alzheimer’s disease (AD) is gradually increasing, and mild cognitive impairment (MCI) is considered to be an early form of Alzheimer’s disease. How to distinguish diseases in the early stage for the purposes of early diagnosis and treatment is an important topic. Aims The purpose of our study was to investigate the differences in brain cortical thickness and surface area among elderly patients with AD, elderly patients with amnestic MCI (aMCI) and normal controls (NC). Methods 20 AD patients, 21 aMCIs and 25 NC were recruited in the study. FreeSurfer software was used to calculate cortical thickness and surface area among groups. Results The patients with AD had less cortical thickness both in the left and right hemisphere in 17 of the 36 brain regions examined than the patients with aMCI or NC. The patients with AD also had smaller cerebral surface area both in the left and right hemisphere in 3 of the 36 brain regions examined than the patients with aMCI or NC. Compared with the NC, the patients with aMCI only had slight atrophy in the inferior parietal lobe of the left hemisphere, and no significant difference was found. Conclusion AD, as well as aMCI (to a lesser extent), is associated with reduced cortical thickness and surface area in a few brain regions associated with cognitive impairment. These results suggest that cortical thickness and surface area could be used for early detection of AD.
Collapse
Affiliation(s)
- Huanqing Yang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
| | - Yan Jin
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weixiong Jiang
- Informational Science and Engineering Department, Hunan First Normal University, Changsha, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yina Wu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Cece Yang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Shi
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
| | - Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng 2018; 12:19-33. [PMID: 30561351 DOI: 10.1109/rbme.2018.2886237] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dementia, a chronic and progressive cognitive declination of brain function caused by disease or impairment, is becoming more prevalent due to the aging population. A major challenge in dementia is achieving accurate and timely diagnosis. In recent years, neuroimaging with computer-aided algorithms have made remarkable advances in addressing this challenge. The success of these approaches is mostly attributed to the application of machine learning techniques for neuroimaging. In this review paper, we present a comprehensive survey of automated diagnostic approaches for dementia using medical image analysis and machine learning algorithms published in the recent years. Based on the rigorous review of the existing works, we have found that, while most of the studies focused on Alzheimer's disease, recent research has demonstrated reasonable performance in the identification of other types of dementia remains a major challenge. Multimodal imaging analysis deep learning approaches have shown promising results in the diagnosis of these other types of dementia. The main contributions of this review paper are as follows. 1) Based on the detailed analysis of the existing literature, this paper discusses neuroimaging procedures for dementia diagnosis. 2) It systematically explains the most recent machine learning techniques and, in particular, deep learning approaches for early detection of dementia.
Collapse
|
20
|
Li Y, Yao Z, Zhang H, Hu B. Indirect relation based individual metabolic network for identification of mild cognitive impairment. J Neurosci Methods 2018; 309:188-198. [DOI: 10.1016/j.jneumeth.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
|
21
|
Zheng W, Yao Z, Xie Y, Fan J, Hu B. Identification of Alzheimer's Disease and Mild Cognitive Impairment Using Networks Constructed Based on Multiple Morphological Brain Features. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:887-897. [PMID: 30077576 DOI: 10.1016/j.bpsc.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023]
Abstract
Structural brain markers are important for characterizing the pathology of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Here, we constructed a multifeature-based network (MFN) for each individual using a sparse linear regression performed on six types of morphological features to promote the structure-based autodiagnosis. The categorization performance of the MFN was evaluated in 165 normal control subjects, 221 patients with MCI, and 142 patients with AD. We achieved 96.42% and 96.37% accuracy, respectively, in distinguishing the patients with AD and MCI from the normal control subjects, and reasonable discrimination of the two disease cohorts (70.52%) and prediction of the MCI to AD progression (65.61%). The performance was further improved by combining the properties of the MFN with the morphological features. Our results demonstrate the effectiveness of the MFN in combination with morphological features obtained from single imaging modality, serving as robust biomarkers in the diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yuanwei Xie
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jin Fan
- Department of Psychology, Queens College, City University of New York, Queens; Department of Neuroscience, Queens College, City University of New York, Queens; Department of Psychiatry, Icahn School of Medicine at Mont Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mont Sinai, New York, New York.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China.
| |
Collapse
|
22
|
Yu K, Wang X, Li Q, Zhang X, Li X, Li S. Individual Morphological Brain Network Construction Based on Multivariate Euclidean Distances Between Brain Regions. Front Hum Neurosci 2018; 12:204. [PMID: 29887798 PMCID: PMC5981802 DOI: 10.3389/fnhum.2018.00204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/01/2018] [Indexed: 01/16/2023] Open
Abstract
Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.
Collapse
Affiliation(s)
- Kaixin Yu
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiongling Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaohui Zhang
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xinwei Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuyu Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
23
|
Liu J, Li M, Lan W, Wu FX, Pan Y, Wang J. Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:624-632. [PMID: 28114031 DOI: 10.1109/tcbb.2016.2635144] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regions of interest (ROIs) based classification has been widely investigated for analysis of brain magnetic resonance imaging (MRI) images to assist the diagnosis of Alzheimer's disease (AD) including its early warning and developing stages, e.g., mild cognitive impairment (MCI) including MCI converted to AD (MCIc) and MCI not converted to AD (MCInc). Since an ROI representation of brain structures is obtained either by pre-definition or by adaptive parcellation, the corresponding ROI in different brains can be measured. However, due to noise and small sample size of MRI images, representations generated from single or multiple ROIs may not be sufficient to reveal the underlying anatomical differences between the groups of disease-affected patients and health controls (HC). In this paper, we employ a whole brain hierarchical network (WBHN) to represent each subject. The whole brain of each subject is divided into 90, 54, 14, and 1 regions based on Automated Anatomical Labeling (AAL) atlas. The connectivity between each pair of regions is computed in terms of Pearson's correlation coefficient and used as classification feature. Then, to reduce the dimensionality of features, we select the features with higher scores. Finally, we use multiple kernel boosting (MKBoost) algorithm to perform the classification. Our proposed method is evaluated on MRI images of 710 subjects (200 AD, 120 MCIc, 160 MCInc, and 230 HC) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our proposed method achieves an accuracy of 94.65 percent and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.954 for AD/HC classification, an accuracy of 89.63 percent and an AUC of 0.907 for AD/MCI classification, an accuracy of 85.79 percent and an AUC of 0.826 for MCI/HC classification, and an accuracy of 72.08 percent and an AUC of 0.716 for MCIc/MCInc classification, respectively. Our results demonstrate that our proposed method is efficient and promising for clinical applications for the diagnosis of AD via MRI images.
Collapse
|
24
|
Liu J, Li M, Pan Y, Wu FX, Chen X, Wang J. Classification of Schizophrenia Based on Individual Hierarchical Brain Networks Constructed From Structural MRI Images. IEEE Trans Nanobioscience 2017; 16:600-608. [PMID: 28910775 DOI: 10.1109/tnb.2017.2751074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With structural magnetic resonance imaging (MRI) images, conventional methods for the classification of schizophrenia (SCZ) and healthy control (HC) extract cortical thickness independently at different regions of interest (ROIs) without considering the correlation between these regions. In this paper, we proposed an improved method for the classification of SCZ and HC based on individual hierarchical brain networks constructed from structural MRI images. Our method involves constructing individual hierarchical networks where each node and each edge in these networks represents a ROI and the correlation between a pair of ROIs, respectively. We demonstrate that edge features make significant improvement in performance of SCZ/HC classification, when compared with only node features. Classification performance is further investigated by combining edge features with node features via a multiple kernel learning framework. The experimental results show that our proposed method achieves an accuracy of 88.72% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.9521 for SCZ/HC classification, which demonstrate that our proposed method is efficient and promising for clinical applications for the diagnosis of SCZ via structural MRI images. Therefore, this paper provides an alternative method for extracting high-order cortical thickness features from structural MRI images for classification of neurodegenerative diseases such as SCZ.
Collapse
|
25
|
Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. Neuroimage 2017; 155:530-548. [PMID: 28414186 PMCID: PMC5511557 DOI: 10.1016/j.neuroimage.2017.03.057] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging has made it possible to measure pathological brain changes associated with Alzheimer's disease (AD) in vivo. Over the past decade, these measures have been increasingly integrated into imaging signatures of AD by means of classification frameworks, offering promising tools for individualized diagnosis and prognosis. We reviewed neuroimaging-based studies for AD and mild cognitive impairment classification, selected after online database searches in Google Scholar and PubMed (January, 1985-June, 2016). We categorized these studies based on the following neuroimaging modalities (and sub-categorized based on features extracted as a post-processing step from these modalities): i) structural magnetic resonance imaging [MRI] (tissue density, cortical surface, and hippocampal measurements), ii) functional MRI (functional coherence of different brain regions, and the strength of the functional connectivity), iii) diffusion tensor imaging (patterns along the white matter fibers), iv) fluorodeoxyglucose positron emission tomography (FDG-PET) (metabolic rate of cerebral glucose), and v) amyloid-PET (amyloid burden). The studies reviewed indicate that the classification frameworks formulated on the basis of these features show promise for individualized diagnosis and prediction of clinical progression. Finally, we provided a detailed account of AD classification challenges and addressed some future research directions.
Collapse
Affiliation(s)
- Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Mohamad Habes
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Muhammad Aksam Iftikhar
- Department of Computer Science, Comsats Institute of Information technology, Lahore, Pakistan
| | - Amanda Shacklett
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
26
|
Kim HJ, Shin JH, Han CE, Kim HJ, Na DL, Seo SW, Seong JK. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients. Front Neurosci 2016; 10:394. [PMID: 27635121 PMCID: PMC5007703 DOI: 10.3389/fnins.2016.00394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/10/2016] [Indexed: 01/18/2023] Open
Abstract
Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are “small world.” There were significant difference between NC and AD group in characteristic path lengths (z = −2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset.
Collapse
Affiliation(s)
- Hee-Jong Kim
- School of Biomedical Engineering, Korea UniversitySeoul, South Korea; Department of Bio-convergence Engineering, Korea UniversitySeoul, South Korea
| | - Jeong-Hyeon Shin
- School of Biomedical Engineering, Korea UniversitySeoul, South Korea; Department of Bio-convergence Engineering, Korea UniversitySeoul, South Korea
| | - Cheol E Han
- School of Biomedical Engineering, Korea UniversitySeoul, South Korea; Department of Bio-convergence Engineering, Korea UniversitySeoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, South Korea; Neuroscience Center, Samsung Medical CenterSeoul, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, South Korea; Neuroscience Center, Samsung Medical CenterSeoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, South Korea; Neuroscience Center, Samsung Medical CenterSeoul, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea UniversitySeoul, South Korea; Department of Bio-convergence Engineering, Korea UniversitySeoul, South Korea
| | | |
Collapse
|