1
|
Muqaku B, Oeckl P. Peptidomic Approaches and Observations in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23137332. [PMID: 35806335 PMCID: PMC9266836 DOI: 10.3390/ijms23137332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mass spectrometry (MS), with its immense technological developments over the last two decades, has emerged as an unavoidable technique in analyzing biomolecules such as proteins and peptides. Its multiplexing capability and explorative approach make it a valuable tool for analyzing complex clinical samples concerning biomarker research and investigating pathophysiological mechanisms. Peptides regulate various biological processes, and several of them play a critical role in many disease-related pathological conditions. One important example in neurodegenerative diseases is the accumulation of amyloid-beta peptides (Aβ) in the brain of Alzheimer’s disease (AD) patients. When investigating brain function and brain-related pathologies, such as neurodegenerative diseases, cerebrospinal fluid (CSF) represents the most suitable sample because of its direct contact with the brain. In this review, we evaluate publications applying peptidomics analysis to CSF samples, focusing on neurodegenerative diseases. We describe the methodology of peptidomics analysis and give an overview of the achievements of CSF peptidomics over the years. Finally, publications reporting peptides regulated in AD are discussed.
Collapse
Affiliation(s)
- Besnik Muqaku
- German Center for Neurodegenerative Diseases (DZNE e.V.), 89081 Ulm, Germany;
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE e.V.), 89081 Ulm, Germany;
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-63143
| |
Collapse
|
2
|
Yu S, Lu Y, Su A, Chen J, Li J, Zhou B, Liu X, Xia Q, Li Y, Li J, Huang M, Ye Y, Zhao Q, Jiang S, Yan X, Wang X, Di C, Pan J, Su S. A CD10-OGP Membrane Peptolytic Signaling Axis in Fibroblasts Regulates Lipid Metabolism of Cancer Stem Cells via SCD1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101848. [PMID: 34363355 PMCID: PMC8498877 DOI: 10.1002/advs.202101848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) consist of heterogeneous subpopulations that play a critical role in the dynamics of the tumor microenvironment. The extracellular signals of CAFs have been attributed to the extracellular matrix, cytokines, cell surface checkpoints, and exosomes. In the present study, it is demonstrated that the CD10 transmembrane hydrolase expressed on a subset of CAFs supports tumor stemness and induces chemoresistance. Mechanistically, CD10 degenerates an antitumoral peptide termed osteogenic growth peptide (OGP). OGP restrains the expression of rate-limiting desaturase SCD1 and inhibits lipid desaturation, which is required for cancer stem cells (CSCs). Targeting CD10 significantly improves the efficacy of chemotherapy in vivo. Clinically, CD10-OGP signals are associated with the response to neoadjuvant chemotherapy in patients with breast cancer. The collective data suggest that a nexus between the niche and lipid metabolism in CSCs is a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - An Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yihong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Qiyi Zhao
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver Disease Researchthe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Key Laboratory of Tropical Disease Control (Sun Yat‐sen University)Ministry of EducationGuangzhouGuangdong510080China
| | - Sushi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaoqing Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Can Di
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Jiayao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Department of Infectious Diseasesthe Third Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510630China
- Department of ImmunologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
3
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
4
|
Fleites LA, Johnson R, Kruse AR, Nachman RJ, Hall DG, MacCoss M, Heck ML. Peptidomics Approaches for the Identification of Bioactive Molecules from Diaphorina citri. J Proteome Res 2020; 19:1392-1408. [PMID: 32037832 DOI: 10.1021/acs.jproteome.9b00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease, is primarily associated with Candidatus Liberibacter asiaticus (CLas) and spread by the hemipteran insect Diaphorina citri. Control strategies to combat HLB are urgently needed. In this work, we developed and compared workflows for the extraction of the D. citri peptidome, a dynamic set of polypeptides produced by proteolysis and other cellular processes. High-resolution mass spectrometry revealed bias among methods reflecting the physiochemical properties of the peptides: while TCA/acetone-based methods resulted in enrichment of C-terminally amidated peptides, a modification characteristic of bioactive peptides, larger peptides were overrepresented in the aqueous phase of chloroform/methanol extracts, possibly indicative of reduced co-analytical degradation during sample preparation. Parallel reaction monitoring (PRM) was used to validate the structure and upregulation of peptides derived from hemocyanin, a D. citri immune system protein, in insects reared on healthy and CLas-infected trees. Mining of the data sets also revealed 122 candidate neuropeptides, including PK/PBAN family neuropeptides and kinins, biostable analogs of which have known insecticidal properties. Taken together, this information yields new, in-depth insights into peptidomics methodology. Additionally, the putative neuropeptides identified may lead to psyllid mortality if applied to or expressed in citrus, consequently blocking the spread of HLB disease in citrus groves.
Collapse
Affiliation(s)
- Laura A Fleites
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Angela R Kruse
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Ronald J Nachman
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, Texas 77845, United States
| | - David G Hall
- USDA Agricultural Research Service, US Horticulture Research Laboratory, Fort Pierce, Florida 34945, United States
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| |
Collapse
|
5
|
Novak P, Cehlar O, Skrabana R, Novak M. Tau Conformation as a Target for Disease-Modifying Therapy: The Role of Truncation. J Alzheimers Dis 2018; 64:S535-S546. [DOI: 10.3233/jad-179942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
WANG Y, WU L, XU JL, LI SM, LIU N, JIANG L. Effect of Reproducibility of Nano-liquid Chromatography- Mass Spectrometry on Analysis of Urinary Peptidomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|