1
|
Chen K, Wang M, Wu J, Zuo C, Huang Y, Wang W, Zhao M, Zhang Y, Zhang X, Chen S, Liu W, Li M, Ge J, Ma X, Wang J, Zheng L, Guan Y, Dong Q, Cui M, Xie F, Zhao Q, Yu J. Incremental value of amyloid PET in a tertiary memory clinic setting in China. Alzheimers Dement 2024; 20:2516-2525. [PMID: 38329281 PMCID: PMC11032579 DOI: 10.1002/alz.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION The objective of this study is to investigate the incremental value of amyloid positron emission tomography (Aβ-PET) in a tertiary memory clinic setting in China. METHODS A total of 1073 patients were offered Aβ-PET using 18F-florbetapir. The neurologists determined a suspected etiology (Alzheimer's disease [AD] or non-AD) with a percentage estimate of their confidence and medication prescription both before and after receiving the Aβ-PET results. RESULTS After disclosure of the Aβ-PET results, etiological diagnoses changed in 19.3% of patients, and diagnostic confidence increased from 69.3% to 85.6%. Amyloid PET results led to a change of treatment plan in 36.5% of patients. Compared to the late-onset group, the early-onset group had a more frequent change in diagnoses and a higher increase in diagnostic confidence. DISCUSSION Aβ-PET has significant impacts on the changes of diagnoses and management in Chinese population. Early-onset cases are more likely to benefit from Aβ-PET than late-onset cases. HIGHLIGHTS Amyloid PET contributes to diagnostic changes and its confidence in Chinese patients. Amyloid PET leads to a change of treatment plans in Chinese patients. Early-onset cases are more likely to benefit from amyloid PET than late-onset cases.
Collapse
Affiliation(s)
- Ke‐Liang Chen
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Ming‐Yu Wang
- School of MedicineQingdao UniversityQingdaoShandongChina
- Departments of NeurologyWeifang People's HospitalWeifangShandongChina
| | - Jie Wu
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Chuan‐Tao Zuo
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wei‐Yi Wang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Meng Zhao
- Department of Neurologythe First Hospital of Jilin UniversityChangchunJilinChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Xue Zhang
- Department of NeurologyQingdao shi zhongxin yiyuanQingdaoShandongChina
| | - Shu‐Fen Chen
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Meng‐Meng Li
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing‐Jie Ge
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Xiao‐Xi Ma
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jie Wang
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Li Zheng
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yi‐Hui Guan
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Qiang Dong
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Qian‐Hua Zhao
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological DiseasesHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Spallazzi M, Michelini G, Barocco F, Dieci F, Copelli S, Messa G, Scarlattei M, Pavesi G, Ruffini L, Caffarra P. The Role of Free and Cued Selective Reminding Test in Predicting [18F]Florbetaben PET Results in Mild Cognitive Impairment and Mild Dementia. J Alzheimers Dis 2021; 73:1647-1659. [PMID: 31958094 DOI: 10.3233/jad-190950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Free and Cued Selective Reminding Test (FCSRT) is a reliable cognitive marker for Alzheimer's disease (AD), and the identification of neuropsychological tests sensitive to the early signs of AD pathology is crucial both in research and clinical practice. OBJECTIVE The study aimed to ascertain the ability of FCSRT in predicting the amyloid load as determined from amyloid PET imaging (Amy-PET) in patients with cognitive disorders. METHODS For our purpose, 79 patients (71 MCI, 8 mild dementia) underwent a complete workup for dementia, including the FCSRT assessment and a [18F]florbetaben PET scan. FCSRT subitem scores were used as predictors in different binomial regression models. RESULTS Immediate free recall and delayed free recall were the best predictors overall in the whole sample; whereas in patients <76 years, all models further improved with immediate total recall (ITR) and Index of Sensitivity of Cueing (ISC) resulting the most accurate in anticipating Amy-PET results, with a likelihood of being Amy-PET positive greater than 85% for ITR and ISC scores of less than 25 and 0.5, respectively. CONCLUSION FCSRT proved itself to be a valid tool in dementia diagnosis, also being able to correlate with amyloid pathology. The possibility to predict Amy-PET results through a simple and reliable neuropsychological test might be helpful for clinicians in the dementia field, adding value to a paper and pencil tool compared to most costly biomarkers.
Collapse
Affiliation(s)
- Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Giovanni Michelini
- Sigmund Freud University, Milano, Italy.,Department of Disability, Fondazione Istituto Ospedaliero di Sospiro - Onlus, Cremona, Italy
| | - Federica Barocco
- Alzheimer Center, FERB, Briolini Hospital, Gazzaniga, Bergamo, Italy
| | | | - Sandra Copelli
- Center for Cognitive Disorders, AUSL Parma, Parma, Italy
| | - Giovanni Messa
- Center for Cognitive Disorders, AUSL Parma, Parma, Italy
| | - Maura Scarlattei
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Giovanni Pavesi
- Department of Medicine and Surgery, Section of Neuroscience, Unit of Neurology, University of Parma, Parma, Italy
| | - Livia Ruffini
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Paolo Caffarra
- Department of Medicine and Surgery, Section of Neuroscience, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Loreto F, Gunning S, Golemme M, Watt H, Patel N, Win Z, Carswell C, Perry RJ, Malhotra PA. Evaluating cognitive profiles of patients undergoing clinical amyloid-PET imaging. Brain Commun 2021; 3:fcab035. [PMID: 34222867 PMCID: PMC8244634 DOI: 10.1093/braincomms/fcab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Episodic memory impairment and brain amyloid-beta are two of the main hallmarks of Alzheimer's Disease. In the clinical setting, these are often evaluated through neuropsychological testing and amyloid PET imaging, respectively. The use of amyloid PET in clinical practice is only indicated in patients with substantial diagnostic uncertainty due to atypical clinical presentation, multiple comorbidities and/or early age of onset. The relationship between amyloid-beta and cognition has been previously investigated, but no study has examined how neuropsychological features relate to the presence of amyloid pathology in the clinical population that meets the appropriate use criteria for amyloid PET imaging. In this study, we evaluated a clinical cohort of patients (n = 107) who presented at the Imperial Memory Clinic and were referred for clinical amyloid PET and neuropsychological assessment as part of their diagnostic workup. We compared the cognitive performance of amyloid-positive patients (Aβ-pos, n = 47) with that of stable amyloid-negative (stableAβ-neg, n = 26) and progressive amyloid-negative (progAβ-neg, n = 34) patients. The amyloid-positive group performed significantly worse than both amyloid-negative groups in the visuospatial and working memory domains. Episodic memory performance, however, effectively differentiated the amyloid-positive group from the stable but not the progressive amyloid-negative group. On affective questionnaires, the stable amyloid-negative group reported significantly higher levels of depression than the amyloid-positive group. In our clinical cohort, visuospatial dysfunction and working memory impairment were better indicators of amyloid positivity than episodic memory dysfunction. These findings highlight the limited value of isolated cognitive scores in patients with atypical clinical presentation, comorbidities and/or early age of onset.
Collapse
Affiliation(s)
- Flavia Loreto
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Stephen Gunning
- Department of Neuropsychology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Mara Golemme
- Department of Neurology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Hilary Watt
- Department of Primary Care and Public Health, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Neva Patel
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Zarni Win
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Christopher Carswell
- Department of Neurology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Richard J Perry
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| |
Collapse
|
4
|
Zhang C, Kong M, Wei H, Zhang H, Ma G, Ba M. The effect of ApoE ε 4 on clinical and structural MRI markers in prodromal Alzheimer's disease. Quant Imaging Med Surg 2020; 10:464-474. [PMID: 32190571 PMCID: PMC7063277 DOI: 10.21037/qims.2020.01.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε 4 has been identified as the strongest genetic risk factor for Alzheimer's disease (AD). However, the importance of ApoE ε 4 on clinical and biological heterogeneity of AD is still to be determined, particularly at the prodromal stage. Here, we evaluate the association of ApoE ε 4 with clinical cognition and neuroimaging regions in mild cognitive impairment (MCI) participants based on the AT (N) system, which is increasingly essential for developing a precise assessment of AD. METHODS We stratified 178 A+T+MCI participants (prodromal AD) into ApoE ε 4 (+) and ApoE ε 4 (-) according to ApoE genotype from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We determined Aβ-positivity (A+) by the standardized uptake values ratios (SUVR) means of florbetapir-PET-AV45 (the cut-off value of 1.1) and fibrillar tau-positivity (T+) by cerebrospinal fluid (CSF) phosphorylated-tau at threonine 181 position (p-Tau) (cut-off value of 23 pg/mL). We evaluated the effect of ApoE ε 4 status on cognitive conditions and brain atrophy from structural magnetic resonance imaging (MRI) scans. A multivariate analysis of variance was used to compare the differences of cognitive scores and brain atrophy from structural MRI regions of interest (ROIs) between both groups. Furthermore, we performed a linear regression model to assess the correlation between signature ROIs of structural MRI and cognitive scores in the prodromal AD participants. RESULTS ApoE ε 4 (+) prodromal AD participants had lower levels of CSF Aβ 1-42, higher levels of t-Tau, more memory and global cognitive impairment, and faster decline of global cognition, compared to ApoE ε 4 (-) prodromal AD. ApoE ε 4 (+) prodromal AD participants had a thinner cortical thickness of bilateral entorhinal, smaller subcortical volume of the left amygdala, bilateral hippocampus, and left ventral diencephalon (DC) relative to ApoE ε 4 (-) prodromal AD. Furthermore, the cortical thickness average of bilateral entorhinal was highly correlated with memory and global cognition. CONCLUSIONS ApoE ε 4 status in prodromal AD participants has an important effect on clinical cognitive domains. After ascertaining the ApoE ε 4 status, specific MRI regions can be correlated to the cognitive domain and will be helpful for precise assessment in prodromal AD.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai 264000, China
| | - Hongchun Wei
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhao Ma
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Maowen Ba
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
- Department of Neurology, Yantaishan Hospital, Yantai 264000, China
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
5
|
Meyer PF, McSweeney M, Gonneaud J, Villeneuve S. AD molecular: PET amyloid imaging across the Alzheimer's disease spectrum: From disease mechanisms to prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:63-106. [PMID: 31481172 DOI: 10.1016/bs.pmbts.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of amyloid-beta (Aβ) positron emission tomography (PET) imaging has transformed the field of Alzheimer's disease (AD) by enabling the quantification of cortical Aβ accumulation and propagation in vivo. This revolutionary tool has made it possible to measure direct associations between Aβ and other AD biomarkers, to identify factors that influence Aβ accumulation and to redefine entry criteria into clinical trials as well as measure drug target engagement. This chapter summarizes the main findings on the associations of Aβ with other biomarkers of disease progression across the AD spectrum. It discusses investigations of the timing at which Aβ pathology starts to accumulate, demonstrates the clinical utility of Aβ PET imaging and discusses some ethical implications. Finally, it presents genetic and potentially modifiable lifestyle factors that might influence Aβ accumulation and therefore be targets for AD prevention.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Melissa McSweeney
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Julie Gonneaud
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|