1
|
Joshi SM, Wilson TC, Li Z, Preshlock S, Gómez-Vallejo V, Gouverneur V, Llop J, Arsequell G. Synthesis and PET Imaging Biodistribution Studies of Radiolabeled Iododiflunisal, a Transthyretin Tetramer Stabilizer, Candidate Drug for Alzheimer's Disease. Molecules 2024; 29:488. [PMID: 38257401 PMCID: PMC10818730 DOI: 10.3390/molecules29020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.
Collapse
Affiliation(s)
- Sameer M. Joshi
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Thomas C. Wilson
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Zibo Li
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sean Preshlock
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Vanessa Gómez-Vallejo
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
2
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
3
|
Barbas R, Font-Bardia M, Ballesteros A, Arsequell G, Prohens R, Frontera A. Static discrete disorder in the crystal structure of iododiflunisal: on the importance of hydrogen bond, halogen bond and π-stacking interactions. CrystEngComm 2022. [DOI: 10.1039/d2ce00202g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a combined computational/crystallographic analysis focused on the static discrete disorder shown by the drug iododiflunisal.
Collapse
Affiliation(s)
- Rafael Barbas
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs X, Centres Científics i Tecnològics, Universitat de Barcelona, Spain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Spain
| |
Collapse
|
4
|
Gião T, Saavedra J, Vieira JR, Pinto MT, Arsequell G, Cardoso I. Neuroprotection in early stages of Alzheimer's disease is promoted by transthyretin angiogenic properties. ALZHEIMERS RESEARCH & THERAPY 2021; 13:143. [PMID: 34429155 PMCID: PMC8385857 DOI: 10.1186/s13195-021-00883-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Background While still controversial, it has been demonstrated that vascular defects can precede the onset of other AD hallmarks features, making it an important therapeutic target. Given that the protein transthyretin (TTR) has been established as neuroprotective in AD, here we investigated the influence of TTR in the vasculature. Methods We evaluated the thickness of the basement membrane and the length of brain microvessels, by immunohistochemistry, in AβPPswe/PS1A246E (AD) transgenic mice and non-transgenic mice (NT) bearing one (TTR+/−) or two (TTR+/+) copies of the TTR gene. The angiogenic potential of TTR was evaluated in vitro using the tube formation assay, and in vivo using the chick chorioallantoic membrane (CAM) assay. Results AD transgenic mice with TTR genetic reduction, AD/TTR+/−, exhibited a thicker BM in brain microvessels and decreased vessel length than animals with normal TTR levels, AD/TTR+/+. Further in vivo investigation, using the CAM assay, revealed that TTR is a pro-angiogenic molecule, and the neovessels formed are functional. Also, TTR increased the expression of key angiogenic molecules such as proteins interleukins 6 and 8, angiopoietin 2, and vascular endothelial growth factor, by endothelial cells, in vitro, under tube formation conditions. We showed that while TTR reduction also leads to a thicker BM in NT mice, this effect is more pronounced in AD mice than in NT animals, strengthening the idea that TTR is a neuroprotective protein. We also studied the effect of TTR tetrameric stabilization on BM thickness, showing that AD mice treated with the TTR tetrameric stabilizer iododiflunisal (IDIF) displayed a significant reduction of BM thickness and increased vessel length, when compared to non-treated littermates. Conclusion Our in vivo results demonstrate the involvement of TTR in angiogenesis, particularly as a modulator of vascular alterations occurring in AD. Since TTR is decreased early in AD, its tetrameric stabilization can represent a therapeutic avenue for the early treatment of AD through the maintenance of the vascular structure. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00883-8.
Collapse
Affiliation(s)
- Tiago Gião
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Joana Saavedra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - José Ricardo Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho,45-, 4200-135, Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034, Barcelona, Spain
| | - Isabel Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal.
| |
Collapse
|
5
|
Rejc L, Gómez-Vallejo V, Joya A, Moreno O, Egimendia A, Castellnou P, Ríos-Anglada X, Cossío U, Baz Z, Passannante R, Tobalina-Larrea I, Ramos-Cabrer P, Giralt A, Sastre M, Capetillo-Zarate E, Košak U, Knez D, Gobec S, Marder M, Martin A, Llop J. Longitudinal evaluation of a novel BChE PET tracer as an early in vivo biomarker in the brain of a mouse model for Alzheimer disease. Am J Cancer Res 2021; 11:6542-6559. [PMID: 33995675 PMCID: PMC8120209 DOI: 10.7150/thno.54589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: The increase in butyrylcholinesterase (BChE) activity in the brain of Alzheimer disease (AD) patients and animal models of AD position this enzyme as a potential biomarker of the disease. However, the information on the ability of BChE to serve as AD biomarker is contradicting, also due to scarce longitudinal studies of BChE activity abundance. Here, we report 11C-labeling, in vivo stability, biodistribution, and longitudinal study on BChE abundance in the brains of control and 5xFAD (AD model) animals, using a potent BChE selective inhibitor, [11C]4, and positron emission tomography (PET) in combination with computerised tomography (CT). We correlate the results with in vivo amyloid beta (Aβ) deposition, longitudinally assessed by [18F]florbetaben-PET imaging. Methods: [11C]4 was radiolabelled through 11C-methylation. Metabolism studies were performed on blood and brain samples of female wild type (WT) mice. Biodistribution studies were performed in female WT mice using dynamic PET-CT imaging. Specific binding was demonstrated by ex vivo and in vivo PET imaging blocking studies in female WT and 5xFAD mice at the age of 7 months. Longitudinal PET imaging of BChE was conducted in female 5xFAD mice at 4, 6, 8, 10 and 12 months of age and compared to age-matched control animals. Additionally, Aβ plaque distribution was assessed in the same mice using [18F]florbetaben at the ages of 2, 5, 7 and 11 months. The results were validated by ex vivo staining of BChE at 4, 8, and 12 months and Aβ at 12 months on brain samples. Results: [11C]4 was produced in sufficient radiochemical yield and molar activity for the use in PET imaging. Metabolism and biodistribution studies confirmed sufficient stability in vivo, the ability of [11C]4 to cross the blood brain barrier (BBB) and rapid washout from the brain. Blocking studies confirmed specificity of the binding. Longitudinal PET studies showed increased levels of BChE in the cerebral cortex, hippocampus, striatum, thalamus, cerebellum and brain stem in aged AD mice compared to WT littermates. [18F]Florbetaben-PET imaging showed similar trend of Aβ plaques accumulation in the cerebral cortex and the hippocampus of AD animals as the one observed for BChE at ages 4 to 8 months. Contrarily to the results obtained by ex vivo staining, lower abundance of BChE was observed in vivo at 10 and 12 months than at 8 months of age. Conclusions: The BChE inhibitor [11C]4 crosses the BBB and is quickly washed out of the brain of WT mice. Comparison between AD and WT mice shows accumulation of the radiotracer in the AD-affected areas of the brain over time during the early disease progression. The results correspond well with Aβ accumulation, suggesting that BChE is a promising early biomarker for incipient AD.
Collapse
|
6
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Prohens R, Cardoso I, Arsequell G. An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloid-β Peptides Interaction. Chemistry 2020; 26:17462-17469. [PMID: 32761825 DOI: 10.1002/chem.202002933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
The protein transthyretin (TTR) modulates amyloid-β (Aβ) peptides deposition and processing and this physiological effect is further enhanced by treatment with iododiflunisal (IDIF), a small-molecule compound (SMC) with TTR tetramer stabilization properties, which behaves as chaperone of the complex. This knowledge has prompted us to design and optimize a rapid and simple high-throughput assay that relies on the ability of test compounds to form ternary soluble complexes TTR/Aβ/SMC that prevent Aβ aggregation. The method uses the shorter Aβ(12-28) sequence which is cheaper and simpler to use while retaining the aggregation properties of their parents Aβ(1-40) and Aβ(1-42). The test is carried out in 96-plate wells that are UV monitored for turbidity during 6 h. Given its reproducibility, we propose that this test can be a powerful tool for efficient screening of SMCs that act as chaperones of the TTR/Aβ interaction that may led to potential AD therapies.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003, Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnologics, Universitat de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|