1
|
Li Y, Kalpouzos G, Bäckman L, Qiu C, Laukka EJ. Association of white matter hyperintensity accumulation with domain-specific cognitive decline: a population-based cohort study. Neurobiol Aging 2023; 132:100-108. [PMID: 37776581 DOI: 10.1016/j.neurobiolaging.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
We investigated the association of load and accumulation of white matter hyperintensities (WMHs) with rate of cognitive decline. This population-based study included 510 dementia-free people (age ≥60 years) who had repeated measures of global and regional (lobar, deep, periventricular) WMHs up to 6 years (from 2001-2003 to 2007-2010) and repeated measures of cognitive function (episodic memory, semantic memory, category fluency, letter fluency, executive function, perceptual speed) up to 15 years (from 2001-2004 to 2016-2019). We found that greater baseline loads of global and regional WMHs were associated with faster decline in letter fluency, perceptual speed, and global cognition. Furthermore, faster accumulation of global, deep, and periventricular WMHs was related to accelerated cognitive decline, primarily in perceptual speed. These data show that WMHs are associated with decline in perceptual speed rather than episodic or semantic memory and that cognitive change is more vulnerable to WMH accumulations in deep and periventricular regions.
Collapse
Affiliation(s)
- Yuanjing Li
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Bäckman
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden.
| |
Collapse
|
2
|
Arvidsson Rådestig M, Skoog I, Skillbäck T, Zetterberg H, Kern J, Zettergren A, Andreasson U, Wetterberg H, Kern S, Blennow K. Cerebrospinal fluid biomarkers of axonal and synaptic degeneration in a population-based sample. Alzheimers Res Ther 2023; 15:44. [PMID: 36869347 PMCID: PMC9983206 DOI: 10.1186/s13195-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Neurofilament light (NfL) and neurogranin (Ng) are promising candidate AD biomarkers, reflecting axonal and synaptic damage, respectively. Since there is a need to understand the synaptic and axonal damage in preclinical Alzheimer's disease (AD), we aimed to determine the cerebrospinal fluid (CSF) levels of NfL and Ng in cognitively unimpaired elderly from the Gothenburg H70 Birth Cohort Studies classified according to the amyloid/tau/neurodegeneration (A/T/N) system. METHODS The sample consisted of 258 cognitively unimpaired older adults (age 70, 129 women and 129 men) from the Gothenburg Birth Cohort Studies. We compared CSF NfL and Ng concentrations in A/T/N groups using Student's T-test and ANCOVA. RESULTS CSF NfL concentration was higher in the A-T-N+ group (p=0.001) and the A-T+N+ group (p=0.006) compared with A-T-N-. CSF Ng concentration was higher in the A-T-N+, A-T+N+, A+T-N+, and A+T+N+ groups (p<0.0001) compared with A-T-N-. We found no difference in NfL or Ng concentration in A+ compared with A- (disregarding T- and N- status), whereas those with N+ had higher concentrations of NfL and Ng compared with N- (p<0.0001) (disregarding A- and T- status). CONCLUSIONS CSF NfL and Ng concentrations are increased in cognitively normal older adults with biomarker evidence of tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- Maya Arvidsson Rådestig
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tobias Skillbäck
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1N 3BG, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jürgen Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hanna Wetterberg
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
3
|
Rådestig MA, Skoog J, Zetterberg H, Skillbäck T, Zettergren A, Sterner TR, Fässberg MM, Sacuiu S, Waern M, Wetterberg H, Blennow K, Skoog I, Kern S. Subtle Differences in Cognition in 70-Year-Olds with Elevated Cerebrospinal Fluid Neurofilament Light and Neurogranin: A H70 Cross-Sectional Study. J Alzheimers Dis 2023; 91:291-303. [PMID: 36617786 PMCID: PMC9881027 DOI: 10.3233/jad-220452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Most research on cerebrospinal fluid (CSF) neurofilament light protein (NfL) as a marker for neurodegeneration and neurogranin (Ng) for synaptic dysfunction has largely focused on clinical cohorts rather than population-based samples. OBJECTIVE We hypothesized that increased CSF levels of NfL and Ng are associated with subtle cognitive deficits in cognitively unimpaired (CU) older adults. METHODS The sample was derived from the Gothenburg H70 Birth Cohort Studies and comprised 258 CU 70-year-olds, with a Clinical Dementia Rating score of zero. All participants underwent extensive cognitive testing. CSF levels of NfL and Ng, as well as amyloid β1 - 42, total tau, and phosphorylated tau, were measured. RESULTS Participants with high CSF NfL performed worse in one memory-based test (Immediate recall, p = 0.013) and a language test (FAS, p = 0.016). Individuals with high CSF Ng performed worse on the memory-based test Supra Span (p = 0.035). When stratified according to CSF tau and Aβ42 concentrations, participants with high NfL and increased tau performed worse on a memory test than participants normal tau concentrations (Delayed recall, p = 0.003). In participants with high NfL, those with pathologic Aβ42 concentrations performed worse on the Delayed recall memory (p = 0.044). In the high Ng group, participants with pathological Aβ42 concentrations had lower MMSE scores (p = 0.027). However, in regression analysis we found no linear correlations between CSF NfL or CSF Ng in relation to cognitive tests when controlled for important co-variates. CONCLUSION Markers of neurodegeneration and synaptic pathology might be associated with subtle signs of cognitive decline in a population-based sample of 70-year-olds.
Collapse
Affiliation(s)
- Maya Arvidsson Rådestig
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Johan Skoog
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Psychiatry/Cognition and Old Age Psychiatry Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
- The UK Dementia Research Institute, UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tobias Skillbäck
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Anna Zettergren
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Therese Rydberg Sterner
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Madeleine Mellqvist Fässberg
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Simona Sacuiu
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Psychiatry/Cognition and Old Age Psychiatry Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Memory Disorders Clinic, Theme Inflammation and Aging, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Clinical Geriatric, Karolinska Institute, Stockholm, Sweden
| | - Margda Waern
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Psychosis Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Hanna Wetterberg
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ingmar Skoog
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Psychiatry/Cognition and Old Age Psychiatry Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Silke Kern
- Center for Ageing and Health (AgeCap), University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Psychiatry/Cognition and Old Age Psychiatry Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
4
|
Pelgrim TA, Beran M, Twait EL, Geerlings MI, Vonk JM. Cross-sectional associations of tau protein biomarkers with semantic and episodic memory in older adults without dementia: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101449. [PMID: 34400308 DOI: 10.1016/j.arr.2021.101449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Pathological tau is suggested to play a role in cognitive deterioration in the preclinical phase of Alzheimer's disease. We investigated cross-sectional associations of tau burden with episodic and semantic memory performance in older adults without dementia. A systematic search in MEDLINE (via PubMed), PsychINFO, and Embase resulted in 24 eligible studies for meta-analysis. Tau burden was assessed using CSF, PET, or histopathological measures. All studies evaluated associations of tau with episodic memory: weighted effect sizes were -0.46 (95 % CI [-0.73; -0.20], p < .001) for episodic composite scores, -0.19 ([-0.36; -0.03], p = .024) for delayed word list recall, and -0.05 ([-0.14; 0.04], p = .257) for logical memory. Fourteen studies evaluated associations of tau with semantic memory: weighted effect sizes were -0.28 ([-0.52; -0.04], p = .023) for semantic composite scores, -0.06 ([-0.16; 0.03], p = .194) for semantic fluency, and 0.06 ([-0.06; 0.18], p = .319) for picture naming. Our findings indicate that tau burden related to both episodic and semantic memory impairment in older individuals without a diagnosis of mild cognitive impairment or manifest dementia, with episodic composite scores showing the strongest association with tau burden. Future potential lies in developing more sensitive scores to detect this subtle cognitive impairment, which could contribute to early identification of individuals in the preclinical phase of Alzheimer's disease, thereby improving early diagnosis and timely intervention.
Collapse
|