1
|
Chu M, Jiang D, Li D, Yan S, Liu L, Nan H, Wang Y, Wang Y, Yue A, Ren L, Chen K, Rosa-Neto P, Lu J, Wu L. Atrophy network mapping of clinical subtypes and main symptoms in frontotemporal dementia. Brain 2024; 147:3048-3058. [PMID: 38426222 PMCID: PMC11370799 DOI: 10.1093/brain/awae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Frontotemporal dementia (FTD) is a disease of high heterogeneity, apathy and disinhibition present in all subtypes of FTD and imposes a significant burden on families/society. Traditional neuroimaging analysis has limitations in elucidating the network localization due to individual clinical and neuroanatomical variability. The study aims to identify the atrophy network map associated with different FTD clinical subtypes and determine the specific localization of the network for apathy and disinhibition. Eighty FTD patients [45 behavioural variant FTD (bvFTD) and 35 semantic variant progressive primary aphasia (svPPA)] and 58 healthy controls at Xuanwu Hospital were enrolled as Dataset 1; 112 FTD patients including 50 bvFTD, 32 svPPA and 30 non-fluent variant PPA (nfvPPA) cases, and 110 healthy controls from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) dataset were included as Dataset 2. Initially, single-subject atrophy maps were defined by comparing cortical thickness in each FTD patient versus healthy controls. Next, the network of brain regions functionally connected to each FTD patient's location of atrophy was determined using seed-based functional connectivity in a large (n = 1000) normative connectome. Finally, we used atrophy network mapping to define clinical subtype-specific network (45 bvFTD, 35 svPPA and 58 healthy controls in Dataset 1; 50 bvFTD, 32 svPPA, 30 nfvPPA and 110 healthy controls in Dataset 2) and symptom-specific networks [combined Datasets 1 and 2, apathy without depression versus non-apathy without depression (80:26), disinhibition versus non-disinhibition (88:68)]. We compare the result with matched symptom networks derived from patients with focal brain lesions or conjunction analysis. Through the analysis of two datasets, we identified heterogeneity in atrophy patterns among FTD patients. However, these atrophy patterns are connected to a common brain network. The primary regions affected by atrophy in FTD included the frontal and temporal lobes, particularly the anterior temporal lobe. bvFTD connects to frontal and temporal cortical areas, svPPA mainly impacts the anterior temporal region and nfvPPA targets the inferior frontal gyrus and precentral cortex regions. The apathy-specific network was localized in the orbital frontal cortex and ventral striatum, while the disinhibition-specific network was localized in the bilateral orbital frontal gyrus and right temporal lobe. Apathy and disinhibition atrophy networks resemble known motivational and criminal lesion networks, respectively. A significant correlation was found between the apathy/disinhibition scores and functional connectivity between atrophy maps and the peak of the networks. This study localizes the common network of clinical subtypes and main symptoms in FTD, guiding future FTD neuromodulation interventions.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Kewei Chen
- School of Mathematics and Statistics, Banner Alzheimer’s Institute, University of Arizona, Arizona Alzheimer’s Consortium, Arizona State University, Tempe, AZ 85014-3666, USA
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal H4H 1R3, Canada
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
2
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yang Y, Sadabad FE, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between neuroimaging and cognition in frontotemporal dementia: An FDG-PET and structural MRI study. J Neuroimaging 2024; 34:627-634. [PMID: 38676301 PMCID: PMC11511789 DOI: 10.1111/jon.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities. METHODS We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both gray matter (GM) volume and glucose metabolism using magnetic resonance imaging and fluorodeoxyglucose (FDG)-PET in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for FDG-PET. Partial volume correction was applied to PET data to account for disease-related atrophy. RESULTS Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.46, p = .04). The association between whole-cortex FDG SUVR and MoCA scores was not significant (r = 0.37, p = .09). GM volumes of the frontal cortex (r = 0.54, p = .01), caudate (r = 0.62, p<.01), and insula (r = 0.57, p<.01) were also significantly correlated with MoCA, as were SUVR values of the insula (r = 0.51, p = .02), thalamus (r = 0.48, p = .03), and posterior cingulate cortex (PCC) (r = 0.47, p = .03). CONCLUSIONS Whole-cortex atrophy is associated with cognitive dysfunction, and this association is larger than for whole-cortex hypometabolism as measured with FDG-PET. At the regional level, focal atrophy and/or hypometabolism in the frontal cortex, insula, PCC, thalamus, and caudate seem to be important for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Faranak Ebrahimian Sadabad
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Argyriou S, Fullard JF, Krivinko JM, Lee D, Wingo TS, Wingo AP, Sweet RA, Roussos P. Beyond memory impairment: the complex phenotypic landscape of Alzheimer's disease. Trends Mol Med 2024; 30:713-722. [PMID: 38821772 PMCID: PMC11329360 DOI: 10.1016/j.molmed.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD) constitute multifaceted behavioral manifestations that reflect processes of emotional regulation, thinking, and social behavior. They are as prevalent in AD as cognitive impairment and develop independently during the progression of neurodegeneration. As studying NPSs in AD is clinically challenging, most AD research to date has focused on cognitive decline. In this opinion article we summarize emerging literature on the prevalence, time course, and the underlying genetic, molecular, and pathological mechanisms related to NPSs in AD. Overall, we propose that NPSs constitute a cluster of core symptoms in AD, and understanding their neurobiology can lead to a more holistic approach to AD research, paving the way for more accurate diagnostic tests and personalized treatments embracing the goals of precision medicine.
Collapse
Affiliation(s)
- Stathis Argyriou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josh M Krivinko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghoon Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA; Veterans Affairs Atlanta Health Care System, Decatur, GA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Street, Bronx, NY, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Street, Bronx, NY, USA.
| |
Collapse
|
4
|
Chu M, Jiang D, Nan H, Wen L, Liu L, Qu M, Wu L. Vascular dysfunction in sporadic bvFTD: white matter hyperintensity and peripheral vascular biomarkers. Alzheimers Res Ther 2024; 16:72. [PMID: 38581060 PMCID: PMC10998369 DOI: 10.1186/s13195-024-01422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Vascular dysfunction was recently reported to be involved in the pathophysiological process of neurodegenerative diseases, but its role in sporadic behavioral variant frontotemporal dementia (bvFTD) remains unclear. The aim of this study was to systematically explore vascular dysfunction, including changes in white matter hyperintensities (WMHs) and peripheral vascular markers in bvFTD. METHODS Thirty-two patients with bvFTD who with no vascular risk factors were enrolled in this cross-sectional study and assessed using positron emission tomography/magnetic resonance (PET/MRI) imaging, peripheral plasma vascular/inflammation markers, and neuropsychological examinations. Group differences were tested using Student's t-tests and Mann-Whitney U tests. A partial correlation analysis was implemented to explore the association between peripheral vascular markers, neuroimaging, and clinical measures. RESULTS WMH was mainly distributed in anterior brain regions. All peripheral vascular factors including matrix metalloproteinases-1 (MMP-1), MMP-3, osteopontin, and pentraxin-3 were increased in the bvFTD group. WMH was associated with the peripheral vascular factor pentraxin-3. The plasma level of MMP-1 was negatively correlated with the gray matter metabolism of the frontal, temporal, insula, and basal ganglia brain regions. The WMHs in the frontal and limbic lobes were associated with plasma inflammation markers, disease severity, executive function, and behavior abnormality. Peripheral vascular markers were associated with the plasma inflammation markers. CONCLUSIONS WMHs and abnormalities in peripheral vascular markers were found in patients with bvFTD. These were found to be associated with the disease-specific pattern of neurodegeneration, indicating that vascular dysfunction may be involved in the pathogenesis of bvFTD. This warrants further confirmation by postmortem autopsy. Targeting the vascular pathway might be a promising approach for potential therapy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
5
|
Tazza F, Schiavi S, Leveraro E, Cellerino M, Boffa G, Ballerini S, Dighero M, Uccelli A, Sbragia E, Aluan K, Inglese M, Lapucci C. Clinical and radiological correlates of apathy in multiple sclerosis. Mult Scler 2024; 30:247-256. [PMID: 38095151 DOI: 10.1177/13524585231217918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Although apathy has been associated with fronto-striatal dysfunction in several neurological disorders, its clinical and magnetic resonance imaging (MRI) correlates have been poorly investigated in people with multiple sclerosis (PwMS). OBJECTIVES To evaluate clinical variables and investigate microstructural integrity of fronto-striatal grey matter (GM) and white matter (WM) structures using diffusion tensor imaging (DTI). METHODS A total of 123 PwMS (age: 40.25 ± 11.5; female: 60.9%; relapsing-remitting multiple sclerosis: 75.6%) were prospectively enrolled and underwent neurological and neuropsychological evaluation, including Expanded Disability Status Scale (EDSS), Apathy Evaluation Scale (AES-S), Hospital Anxiety and Depression Scale (HADS), Modified Fatigue Impact Scale (MFIS) and brain 3T-MRI volumes of whole brain, frontal/prefrontal cortex (PFC) and subcortical regions were calculated. DTI-derived metrics were evaluated in the same GM regions and in connecting WM tracts. RESULTS Apathetic PwMS (32.5%) showed lower education levels, higher HADS, MFIS scores and WM lesions volume than nonapathetic PwMS. Significant differences in DTI metrics were found in middle frontal, anterior cingulate and superior frontal PFC subregions and in caudate nuclei. Significant alterations were found in the right cingulum and left striatal-frontorbital tracts. CONCLUSIONS Apathy in PwMS is associated with higher levels of physical disability, depression, anxiety and fatigue together with lower educational backgrounds. Microstructural damage within frontal cortex, caudate and fronto-striatal WM bundles is a significant pathological substrate of apathy in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Leveraro
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Ballerini
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mara Dighero
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kenda Aluan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Lapucci
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yanghong Y, Sadabad FE, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between Neuroimaging and Cognition in Frontotemporal Dementia: A [18 F]FDG PET and Structural MRI Study. RESEARCH SQUARE 2024:rs.3.rs-3846125. [PMID: 38313264 PMCID: PMC10836106 DOI: 10.21203/rs.3.rs-3846125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous condition with a prevalence comparable to Alzheimer's Disease for patients under sixty-five years of age. Gray matter (GM) atrophy and glucose hypometabolism are important biomarkers for the diagnosis and evaluation of disease progression in FTD. However, limited studies have systematically examined the association between cognition and neuroimaging in FTD using different imaging modalities in the same patient group. Methods We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both GM volume and glucose metabolism using structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography scanning ([18F]FDG PET) in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for [18F]FDG PET. Partial volume correction was applied to PET data to account for disease-related atrophy. Results Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.461, p = 0.035). The association between whole-cortex [18F]FDG SUVR and MoCA scores was not Significant (r = 0.374, p = 0.094). GM volumes of the frontal cortex (r = 0.540, p = 0.011), caudate (r = 0.616, p = 0.002), and insula (r = 0.568, p = 0.007) were also Significantly correlated with MoCA, as were SUVR values of the insula (r = 0.508, p = 0.018), thalamus (r = 0.478, p = 0.028), and posterior cingulate cortex (PCC) (r = 0.472, p = 0.030). Discussion Whole-cortex atrophy is associated with cognitive dysfunction, and this effect is larger than for cortical hypometabolism as measured with [18F]FDG PET. At the regional level, focal atrophy and/or hypometabolism in the frontal lobe, insula, PCC, thalamus, and caudate seem to imply the importance of these regions for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways. Our findings provide insight into the relationships between structural, metabolic, and cognitive changes due to FTD.
Collapse
|
7
|
Benussi A, Premi E, Grassi M, Alberici A, Cantoni V, Gazzina S, Archetti S, Gasparotti R, Fumagalli GG, Bouzigues A, Russell LL, Samra K, Cash DM, Bocchetta M, Todd EG, Convery RS, Swift I, Sogorb-Esteve A, Heller C, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce RJ, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Mendonça A, Tiraboschi P, Butler CR, Santana I, Gerhard A, Le Ber I, Pasquier F, Ducharme S, Levin J, Sorbi S, Otto M, Padovani A, Rohrer JD, Borroni B. Diagnostic accuracy of research criteria for prodromal frontotemporal dementia. Alzheimers Res Ther 2024; 16:10. [PMID: 38216961 PMCID: PMC10785469 DOI: 10.1186/s13195-024-01383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Enrico Premi
- Vascular Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, 27100, Pavia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Valentina Cantoni
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Stefano Gazzina
- Department of Neurological and Vision Sciences, Neurophysiology Unit, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Neuroradiology Unit, University of Brescia, 25123, Brescia, Italy
| | - Giorgio G Fumagalli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, 38068, Rovereto, Italy
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Imogen Swift
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Aitana Sogorb-Esteve
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, 20014, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014, San Sebastian, Gipuzkoa, Spain
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 141 52, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 141 52, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, 72076, Tubingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3001, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, SW7 2BX, UK
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, 3004-561, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-561, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 47057, Essen, Germany
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Florence Pasquier
- Univ Lille, 59000, Lille, France
- , Inserm 1172, 59000, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000, Lille, France
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 80539, Munich, Germany
- Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster of Systems Neurology, 81377, Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081, Ulm, Germany
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy.
| |
Collapse
|
8
|
Cozza M, Boccardi V. A narrative review on mild behavioural impairment: an exploration into its scientific perspectives. Aging Clin Exp Res 2023; 35:1807-1821. [PMID: 37392350 DOI: 10.1007/s40520-023-02472-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
In clinical practice, the admission of patients with late-onset psychological and behavioural symptoms is frequent, regardless of the presence or absence of cognitive decline. These symptoms commonly occur in the prodromal stage of dementia and can precede the onset of dementia. While the concept of Mild Cognitive Impairment (MCI) -which is defined as a level of cognitive impairment insufficient to impact daily functioning- is well established, the notion of Mild Behavioural Impairment (MBI) is not yet widely recognized. However, studies have demonstrated that the presence of MBI in both cognitively normal patients and individuals with MCI is associated with an increased risk of dementia progression. Thus, MBI may serve as a neurobehavioral indicator of pre-dementia risk states. This narrative review aims to discuss the evolution of the term, the relevant clinical aspects, and potential biomarkers that may contribute to the clinical definition of MBI. The objective is to assist clinicians in recognizing the diagnosis and differentiating it from psychiatric syndromes, as well as identifying possible etiologies of neurodegeneration.
Collapse
Affiliation(s)
- Mariagiovanna Cozza
- Department of Integration, Intermediate Care Programme, AUSL Bologna, Bologna, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
9
|
van Engelen MPE, Verfaillie SCJ, Dols A, Oudega ML, Boellaard R, Golla SSV, den Hollander M, Ossenkoppele R, Scheltens P, van Berckel BNM, Pijnenburg YAL, Vijverberg EGB. Altered brain metabolism in frontotemporal dementia and psychiatric disorders: involvement of the anterior cingulate cortex. EJNMMI Res 2023; 13:71. [PMID: 37493827 PMCID: PMC10371967 DOI: 10.1186/s13550-023-01020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. RESULTS Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca's area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). CONCLUSIONS Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation.
Collapse
Affiliation(s)
- Marie-Paule E van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University of Utrecht, Utrecht, The Netherlands
| | - Mardien L Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- EQT Life Sciences Partners, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Chu M, Jiang D, Liu L, Nie B, Rosa-Neto P, Chen K, Wu L. Clinical relevance of disrupted topological organization of anatomical connectivity in behavioral variant frontotemporal dementia. Neurobiol Aging 2023; 124:29-38. [PMID: 36724600 PMCID: PMC11102657 DOI: 10.1016/j.neurobiolaging.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Graph theory is a novel approach used to examine the balance of brain connectomes. However, the clinical relevance of white matter (WM) connectome changes in the behavioral variant frontotemporal dementia (bvFTD) is not well understood. We aimed to investigate the clinical relevance of WM topological alterations in bvFTD. Thirty patients with probable bvFTD and 30 healthy controls underwent diffusion tensor imaging, structural MRI, and neuropsychological assessment. WM connectivity between 90 brain regions was calculated and the graph approach was applied to capture the individual characteristics of the anatomical network. Voxel-based morphometry and tract-based spatial statistics were used to present the gray matter atrophy and disrupted WM integrity. The topological organization was disrupted in patients with bvFTD both globally and locally. Compared to controls, bvFTD data showed a different pattern of hub region distributions. Notably, the nodal efficiency of the right superior orbital frontal gyrus was associated with apathy and disinhibition. Topological measures may be potential image markers for early diagnosis and disease severity monitoring of bvFTD.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Montreal, Canada
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA; College of Medicine-Phoenix, University of Arizona, Tucson, AZ, USA; School of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, Wang Y, Wang Y, Qu M, Wang N, Wu L. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation 2023; 20:65. [PMID: 36890594 PMCID: PMC9996857 DOI: 10.1186/s12974-023-02746-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a significant role in the progression of frontotemporal dementia (FTD). However, the association between peripheral inflammatory factors and brain neurodegeneration is poorly understood. We aimed to examine changes in peripheral inflammatory markers in patients with behavioural variant FTD (bvFTD) and explore the potential association between peripheral inflammation and brain structure, metabolism, and clinical parameters. METHODS Thirty-nine bvFTD patients and 40 healthy controls were enrolled and underwent assessment of plasma inflammatory factors, positron emission tomography/magnetic resonance imaging, and neuropsychological assessments. Group differences were tested using Student's t test, Mann‒Whitney U test, or ANOVA. Partial correlation analysis and multivariable regression analysis were implemented using age and sex as covariates to explore the association between peripheral inflammatory markers, neuroimaging, and clinical measures. The false discovery rate was used to correct for the multiple correlation test. RESULTS Plasma levels of six factors, including interleukin (IL)-2, IL-12p70, IL-17A, tumour necrosis superfamily member 13B (TNFSF/BAFF), TNFSF12 (TWEAK), and TNFRSF8 (sCD30), were increased in the bvFTD group. Five factors were significantly associated with central degeneration, including IL-2, IL-12p70, IL-17A, sCD30/TNFRSF8, and tumour necrosis factor (TNF)-α; the association between inflammation and brain atrophy was mainly distributed in frontal-limbic-striatal brain regions, whereas the association with brain metabolism was mainly in the frontal-temporal-limbic-striatal regions. BAFF/TNFSF13B, IL-4, IL-6, IL-17A and TNF-α were found to correlate with clinical measures. CONCLUSION Peripheral inflammation disturbance in patients with bvFTD participates in disease-specific pathophysiological mechanisms, which could be a promising target for diagnosis, treatment, and monitoring therapeutic efficacy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
12
|
Liu L, Chu M, Nie B, Liu L, Xie K, Cui Y, Kong Y, Chen Z, Nan H, Chen K, Rosa-Neto P, Wu L. Reconfigured metabolism brain network in asymptomatic microtubule-associated protein tau mutation carriers: a graph theoretical analysis. Alzheimers Res Ther 2022; 14:52. [PMID: 35410286 PMCID: PMC8996677 DOI: 10.1186/s13195-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Background Studies exploring topological properties of the metabolic network during the presymptomatic stage of genetic frontotemporal dementia (FTD) are scarce. However, such knowledge is important for understanding brain function and disease pathogenesis. Therefore, we aimed to explore FTD-specific patterns of metabolism topology reconfiguration in microtubule-associated protein tau (MAPT) mutation carriers before the onset of symptoms. Methods Six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who all belonged to the same family of FTD. For comparison, we included 32 behavioral variant FTD (bvFTD) patients and 33 unrelated healthy controls. Each participant underwent neuropsychological assessments, genetic testing, and a hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) scan. Voxel-wise gray matter volumes and standardized uptake value ratios were calculated and compared for structural MRI and fluorodeoxyglucose (FDG)-PET, separately. The sparse inverse covariance estimation method (SICE) was applied to topological properties and metabolic connectomes of brain functional networks derived from 18F-FDG PET/MRI data. Independent component analysis was used to explore the metabolic connectivity of the salience (SN) and default mode networks (DMN). Results The asymptomatic MAPT carriers performed normal global parameters of the metabolism network, whereas bvFTD patients did not. However, we revealed lost hubs in the ventromedial prefrontal, orbitofrontal, and anterior cingulate cortices and reconfigured hubs in the anterior insula, precuneus, and posterior cingulate cortex in asymptomatic carriers compared with non-carriers, which overlapped with the comparisons between bvFTD patients and controls. Similarly, significant differences in local parameters of these nodes were present between asymptomatic carriers and non-carriers. The reduction in the connectivity of lost hub regions and the enhancement of connectivity between reconfigured hubs and components of the frontal cortex were marked during the asymptomatic stage. Metabolic connectivity within the SN and DMN was enhanced in asymptomatic carriers compared with non-mutation carriers but reduced in bvFTD patients relative to controls. Conclusions Our findings showed that metabolism topology reconfiguration, characterized by the earliest involvement of medial prefrontal areas and active compensation in task-related regions, was present in the presymptomatic phase of genetic FTD with MAPT mutation, which may be used as an imaging biomarker of increased risk of FTD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01000-z.
Collapse
|
13
|
Chu M, Liu L, Nan H, Jiang D, Wang Y, Rosa-Neto P, Piao Y, Wu L. Extremely Early-Onset Frontotemporal Dementia: A Case Report and Literature Review. J Alzheimers Dis 2022; 90:1139-1151. [PMID: 36214000 PMCID: PMC9741737 DOI: 10.3233/jad-220679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND In most cases, the onset of frontotemporal dementia (FTD) occurs between the ages of 45 and 65 years. However, some patients experience an extremely early disease onset. OBJECTIVE To investigate the clinical, genetic, and pathological features of extremely early-onset FTD. METHODS We conducted a comprehensive clinical, genetic, and neuropathological analysis of a 25-year-old patient experiencing the onset of behavioral variant frontotemporal dementia (bvFTD). In addition, we conducted a literature review and summarized the clinical, genetic, and pathological features of patients with FTD with onset age≤25 years. RESULTS The patient was diagnosed with bvFTD; however, there was no family history of FTD, no positive genetic test results and no deposition of TDP43, tau, ubiquitin, and synuclein in the brain. Literature screening identified 18 patients with onset age ≤25 years with FTD. The youngest patient was 14 years of age. Most patients (8/14) had a positive family history. The most common clinical phenotype was the behavioral variant (12/14). Genetic results were reported for 11 patients; the most common pathogenic gene was MAPT (10/12), with four cases of G389 R, two cases of P301 S, one case of G335 S, one case of G335A, one case of G335 V, and one case of L315 R. Pathological results were reported for 13 patients; the most common pathological subtype was tau (8/13). CONCLUSION FTD can start at an extremely early age. The most common phenotype of extremely early onset FTD was the behavioral variant, the most common pathogenic gene was MAPT, and the most common neuropathological type was tau.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, Canada
| | - Yueshan Piao
- Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, China,Correspondence to: Liyong Wu, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83923051; E-mail: and Yueshan Piao, Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83198757; E-mail:
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China,Correspondence to: Liyong Wu, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83923051; E-mail: and Yueshan Piao, Department of Neuropathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Tel.: +86 10 83198757; E-mail:
| |
Collapse
|