1
|
Del Percio C, Lizio R, Lopez S, Noce G, Carpi M, Jakhar D, Soricelli A, Salvatore M, Yener G, Güntekin B, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Carducci F, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Özbek-İşbitiren Y, D’Anselmo A, Bonanni L, Biundo R, D’Antonio F, Bruno G, Antonini A, Giubilei F, Farotti L, Parnetti L, Frisoni GB, Babiloni C. Resting-State EEG Alpha Rhythms Are Related to CSF Tau Biomarkers in Prodromal Alzheimer's Disease. Int J Mol Sci 2025; 26:356. [PMID: 39796211 PMCID: PMC11720070 DOI: 10.3390/ijms26010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show abnormally high delta (<4 Hz) and low alpha (8-12 Hz) rhythms measured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated with the diagnostic cerebrospinal fluid (CSF) amyloid-tau biomarkers in ADMCI patients. An international database provided clinical-demographic-rsEEG datasets for cognitively unimpaired older (Healthy; N = 45), ADMCI (N = 70), and noADMCI (N = 45) participants. The rsEEG rhythms spanned individual delta, theta, and alpha frequency bands. The eLORETA freeware estimated cortical rsEEG sources. Posterior rsEEG alpha source activities were reduced in the ADMCI group compared not only to the Healthy group but also to the noADMCI group (p < 0.001). Negative associations between the CSF phospho-tau and total tau levels and posterior rsEEG alpha source activities were observed in the ADMCI group (p < 0.001), whereas those with CSF amyloid beta 42 levels were marginal. These results suggest that neurophysiological brain neural oscillatory synchronization mechanisms regulating cortical arousal and vigilance through rsEEG alpha rhythms are mainly affected by brain tauopathy in ADMCI patients.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Giuseppe Noce
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Matteo Carpi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Andrea Soricelli
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
- Department of Medical, Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, 35340 İzmir, Turkey;
- IBG: International Biomedicine and Genome Center, 35340 Izmir, Turkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey;
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Fabrizio Stocchi
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
- Department of Neurology, Telematic University San Raffaele, 00166 Rome, Italy
| | - Laura Vacca
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Chiara Coletti
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AE, UK;
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Nesrin Helvacı Yılmaz
- Department of Neurology, Medipol University Istanbul Parkinson’s Disease and Movement Disorders Center (PARMER), 34718 Istanbul, Turkey;
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Yağmur Özbek-İşbitiren
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Anita D’Anselmo
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Roberta Biundo
- Department of General Psychology, University of Padua, 35128 Padova, Italy;
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy;
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, 06123 Perugia, Italy;
| | - Lucilla Parnetti
- Department of Medicine and Surgery, University of Perugia, 05100 Perugia, Italy;
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
2
|
Holston EC. An Integrative Review about Electrophysiological Biomarkers of Cognitive Impairment in Alzheimer's Disease: A Developing Relationship. Issues Ment Health Nurs 2024; 45:746-757. [PMID: 38954497 DOI: 10.1080/01612840.2024.2352011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Background: Electrophysiological biomarkers are being examined as potential diagnostic measures of cognitive impairment and its manifestations for psychiatric nurses' use in the care of Alzheimer's disease (AD). However, there is no integrative review describing the themes from the current research about electrophysiological biomarkers and the developing relationship among the themes. Characterizing this developing relationship is imperative for any possible integration of biomarkers into the care of AD by psychiatric nurses. Objective: The purpose of this integrative review is to identify themes from the current research about electrophysiological biomarkers of AD and the developing relationship among the themes, the conceivable relational premise for psychiatric nurses to integrate electrophysiological biomarkers into the screening, assessment, diagnosis, and treatment of AD for the care of persons with AD. Methods: A literature search was executed with PUBMED (accessing Medline and Elsevier) and CINAHL databases that focused on studies about electrophysiological biomarkers of AD from 2015 to 2022. Twenty-seven peer-reviewed studies met this review's inclusion criteria. Results: Five themes emerged: (1) assessing/screening, (2) assessment differential, (3) diagnosing, (4) diagnostic accuracy, and (5) treating. These themes related sequentially and linearly, establishing a developing relationship about the risk, the onset, and the progression of AD. Discussion: Electrophysiological biomarkers associated to cognitive impairment in AD, supporting the accepted understanding of the symptoms of AD. Changes in behavior and functioning were not examined, limiting the possible integration of electrophysiological biomarkers. Further investigations are warranted with an expansion of the clinical symptoms and diverse study populations.
Collapse
Affiliation(s)
- Ezra C Holston
- Orvis School of Nursing, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
3
|
Stam CJ, van Nifterick AM, de Haan W, Gouw AA. Network Hyperexcitability in Early Alzheimer's Disease: Is Functional Connectivity a Potential Biomarker? Brain Topogr 2023:10.1007/s10548-023-00968-7. [PMID: 37173584 DOI: 10.1007/s10548-023-00968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Network hyperexcitability (NH) is an important feature of the pathophysiology of Alzheimer's disease. Functional connectivity (FC) of brain networks has been proposed as a potential biomarker for NH. Here we use a whole brain computational model and resting-state MEG recordings to investigate the relation between hyperexcitability and FC. Oscillatory brain activity was simulated with a Stuart Landau model on a network of 78 interconnected brain regions. FC was quantified with amplitude envelope correlation (AEC) and phase coherence (PC). MEG was recorded in 18 subjects with subjective cognitive decline (SCD) and 18 subjects with mild cognitive impairment (MCI). Functional connectivity was determined with the corrected AECc and phase lag index (PLI), in the 4-8 Hz and the 8-13 Hz bands. The excitation/inhibition balance in the model had a strong effect on both AEC and PC. This effect was different for AEC and PC, and was influenced by structural coupling strength and frequency band. Empirical FC matrices of SCD and MCI showed a good correlation with model FC for AEC, but less so for PC. For AEC the fit was best in the hyperexcitable range. We conclude that FC is sensitive to changes in E/I balance. The AEC was more sensitive than the PLI, and results were better for the thetaband than the alpha band. This conclusion was supported by fitting the model to empirical data. Our study justifies the use of functional connectivity measures as surrogate markers for E/I balance.
Collapse
Affiliation(s)
- C J Stam
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - A M van Nifterick
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - W de Haan
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - A A Gouw
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|