1
|
Ferrari C, Capacci E, Bagnoli S, Ingannato A, Sorbi S, Nacmias B. The Huntington's Disease Gene in an Italian Cohort of Patients with Bipolar Disorder. Genes (Basel) 2023; 14:1681. [PMID: 37761821 PMCID: PMC10531383 DOI: 10.3390/genes14091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Huntington's disease (HD) is characterized by motor, cognitive and psychiatric manifestations and caused by an expansion of CAG repeats over 35 triplets on the huntingtin (HTT) gene. However, expansions in the range 27-35 repeats (intermediate allele) can be associated with pathological phenotypes. The onset of HD is conventionally defined by the onset of motor symptoms, but psychiatric disturbances can precede the motor phase by up to twenty years. The aims of the present study are to identify HD patients in the pre-motor phase of the disease among patients diagnosed with bipolar disorders and evaluate any differences between bipolar patients carrying the normal HTT allele and patients with the expanded HTT gene. METHODS We assessed the HTT genotype in an Italian cohort of 69 patients who were affected by either type 1 or type 2 bipolar disorder. RESULTS No patient was found to be a carrier of the pathological HTT allele, but 10% of bipolar subjects carried an intermediate allele. Carriers of the intermediate allele were older at the onset of psychiatric symptoms than non-carriers. CONCLUSION The pathological HTT gene was not associated with bipolar disorder, while we found a higher frequency of the intermediate allele among the bipolar population with respect to healthy controls. The identification of this subset of bipolar subjects has implications for the clinical management of patients and their family members and promotes further investigation into possible pathological mechanisms common to both HD and bipolar disorder.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
| | - Elena Capacci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (E.C.); (S.B.); (A.I.); (S.S.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| |
Collapse
|
2
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
3
|
Tibben A, Dondorp WJ, de Wert GM, de Die-Smulders CE, Losekoot M, Bijlsma EK. Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners. J Huntingtons Dis 2020; 8:71-78. [PMID: 30689590 DOI: 10.3233/jhd-180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amongst the main reasons people at risk for Huntington's disease (HD) have for undergoing predictive genetic testing are planning a family and prevention of passing on an expanded CAG-repeat to future offspring. After having received an unfavourable test result, a couple may consider prenatal testing in the foetus or preimplantation genetic diagnostic testing (PGD) in embryos. Testing of the foetus or embryos is possible by means of direct testing of the expanded repeat. Optimal reliability in testing the foetus or embryos requires the establishment of the origin of the repeats of both parents in the foetus. For PGD the analysis is combined with or sometimes solely based on identification of the at-risk haplotype in the embryo. This policy implies that in the context of direct testing, the healthy partner's CAG repeat lengths in the HD gene are also tested, but with the expectation that the repeat lengths of the partner are within the normal range, with the proviso that the partner's pedigree is free of clinically confirmed HD. However, recent studies have shown that the expanded repeat has been observed more often in the general population than previously estimated. Moreover, we have unexpectedly observed an expanded repeat in the non-HD partner in four cases which had far-reaching consequences. Hence, we propose that in the context of reproductive genetic counselling, prior to a planned pregnancy, and irrespective of the outcome of the predictive test in the HD-partner, the non-HD partner should also be given the option of being tested on the expanded allele. International recommendations for predictive testing for HD should be adjusted.
Collapse
Affiliation(s)
- Aad Tibben
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wybo J Dondorp
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | - Guido M de Wert
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | | | - Moniek Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Parkinsonism with a Hint of Huntington's from 29 CAG Repeats in HTT. Brain Sci 2019; 9:brainsci9100245. [PMID: 31546689 PMCID: PMC6826852 DOI: 10.3390/brainsci9100245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease is caused by at least 36 cytosine-adenine-guanine (CAG) repeats in an HTT gene allele, but repeat tracts in the intermediate range (27-35 repeats) also display a subtle phenotype. This patient had a slightly elongated CAG repeat tract (29 repeats), a prominent family history of Parkinson's disease (PD), and a clinical phenotype mostly consistent with PD, but early dystonia and poor levodopa response. Neurophysiological test results were more consistent with Huntington's disease (HD) than PD. It is suggested that the intermediate allele modulated the clinical phenotype of PD in this patient.
Collapse
|
5
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
6
|
Abstract
Background: Although the typical age of onset for Huntington’s disease (HD) is in the fourth decade, between 4.4–11.5% of individuals with HD have a late onset (over 60 years of age). Diagnosis of Late onset HD (LoHD) can be missed, due to the perceived low likelihood of HD in the over 60-year-olds. Objective: To review the epidemiology, genotype and phenotype of LoHD. Methods: We systematically searched MEDLINE, EMBASE and Web of Science (inception-November 2016). Web of Science was then used to search for papers citing identified studies. Content experts were consulted for any additional studies. We included all studies reporting the clinical phenotype of LoHD for more than one participant. Results: 20 studies were identified from a potential list of 1243. Among Caucasian HD cohorts, 4.4–11.5% of individuals have LoHD, and this proportion may be increasing. Proportion of LoHD without a positive family history ranges from 3–68%. 94.4% of reported cases of LoHD had CAG repeat lengths of ≤44. Motor manifestations are the commonest initial presentation, although 29.2% presented with non-motor manifestations as the first clinical feature in one case series. Individuals with LoHD may have slower progression of illness. Cognitive impairment rather than chorea may be the major source of disability in this group. Conclusions: LoHD represents a substantial proportion of new diagnoses of HD and has some unique features. Further characterization of this population will aid clinicians in diagnosis.
Collapse
Affiliation(s)
- Sai S Chaganti
- Huntington Disease Service, Westmead Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Elizabeth A McCusker
- Huntington Disease Service, Westmead Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Clement T Loy
- Huntington Disease Service, Westmead Hospital, Sydney, Australia.,School of Public Health, The University of Sydney, Sydney, Australia.,The Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
7
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|
8
|
Reply to: “Reply to Late onset Huntington's disease with 29 CAG repeat expansion” JNS-D-16-00732. J Neurol Sci 2016; 369:390. [DOI: 10.1016/j.jns.2016.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
|
9
|
Oosterloo M, Van Belzen MJ, Bijlsma EK, Roos RA. Reply: Late onset Huntington's disease with 29 CAG repeat expansion. J Neurol Sci 2016; 368:343. [DOI: 10.1016/j.jns.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
|