1
|
Herrmann F, Hessmann M, Schaertl S, Berg-Rosseburg K, Brown CJ, Bursow G, Chiki A, Ebneth A, Gehrmann M, Hoeschen N, Hotze M, Jahn S, Johnson PD, Khetarpal V, Kiselyov A, Kottig K, Ladewig S, Lashuel H, Letschert S, Mills MR, Petersen K, Prime ME, Scheich C, Schmiedel G, Wityak J, Liu L, Dominguez C, Muñoz-Sanjuán I, Bard JA. Pharmacological characterization of mutant huntingtin aggregate-directed PET imaging tracer candidates. Sci Rep 2021; 11:17977. [PMID: 34504195 PMCID: PMC8429736 DOI: 10.1038/s41598-021-97334-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer’s disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer’s disease patients.
Collapse
Affiliation(s)
| | | | | | | | - Christopher J Brown
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | | | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | | | | | - Madlen Hotze
- Evotec SE, Essener Bogen 7, 22419, Hamburg, Germany
| | | | - Peter D Johnson
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | - Alex Kiselyov
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | | | | | - Hilal Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | - Matthew R Mills
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | | | - Michael E Prime
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | | | | | - John Wityak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | - Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | - Ignacio Muñoz-Sanjuán
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA
| | - Jonathan A Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, 90045, USA.
| |
Collapse
|
2
|
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020; 143:266-288. [PMID: 31848580 DOI: 10.1093/brain/awz363] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack C Reidling
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Rolfes S, Munro DAD, Lyras EM, Matute E, Ouk K, Harms C, Böttcher C, Priller J. Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2020; 144:105024. [PMID: 32702387 DOI: 10.1016/j.nbd.2020.105024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.
Collapse
Affiliation(s)
- Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ekaterini-Maria Lyras
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eduardo Matute
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Koliane Ouk
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; DZNE Berlin, 10117 Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK; DZNE Berlin, 10117 Berlin, Germany.
| |
Collapse
|
4
|
Ochaba J, Fote G, Kachemov M, Thein S, Yeung SY, Lau AL, Hernandez S, Lim RG, Casale M, Neel MJ, Monuki ES, Reidling J, Housman DE, Thompson LM, Steffan JS. IKKβ slows Huntington's disease progression in R6/1 mice. Proc Natl Acad Sci U S A 2019; 116:10952-10961. [PMID: 31088970 PMCID: PMC6561205 DOI: 10.1073/pnas.1814246116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKβ, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington's disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKβ on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKβ phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKβ to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKβ knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKβ in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKβ knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKβ is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKβ is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKβ may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.
Collapse
Affiliation(s)
- Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Gianna Fote
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Marketta Kachemov
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Soe Thein
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sylvia Y Yeung
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Alice L Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sarah Hernandez
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Michael J Neel
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697
| | - Jack Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - David E Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697;
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| |
Collapse
|