1
|
Abraham B, Mohan J, John SM, Ramachandran S. Computer-Aided detection of tuberculosis from X-ray images using CNN and PatternNet classifier. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023:XST230028. [PMID: 37182860 DOI: 10.3233/xst-230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a highly infectious disease that mainly affects the human lungs. The gold standard for TB diagnosis is Xpert Mycobacterium tuberculosis/ resistance to rifampicin (MTB/RIF) testing. X-ray, a relatively inexpensive and widely used imaging modality, can be employed as an alternative for early diagnosis of the disease. Computer-aided techniques can be used to assist radiologists in interpreting X-ray images, which can improve the ease and accuracy of diagnosis. OBJECTIVE To develop a computer-aided technique for the diagnosis of TB from X-ray images using deep learning techniques. METHODS This research paper presents a novel approach for TB diagnosis from X-ray using deep learning methods. The proposed method uses an ensemble of two pre-trained neural networks, namely EfficientnetB0 and Densenet201, for feature extraction. The features extracted using two CNNs are expected to generate more accurate and representative features than a single CNN. A custom-built artificial neural network (ANN) called PatternNet with two hidden layers is utilized to classify the extracted features. RESULTS The effectiveness of the proposed method was assessed on two publicly accessible datasets, namely the Montgomery and Shenzhen datasets. The Montgomery dataset comprises 138 X-ray images, while the Shenzhen dataset has 662 X-ray images. The method was further evaluated after combining both datasets. The method performed exceptionally well on all three datasets, achieving high Area Under the Curve (AUC) scores of 0.9978, 0.9836, and 0.9914, respectively, using a 10-fold cross-validation technique. CONCLUSION The experiments performed in this study prove the effectiveness of features extracted using EfficientnetB0 and Densenet201 in combination with PatternNet classifier in the diagnosis of tuberculosis from X-ray images.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Muttathara, Thiruvananthapuram, Kerala, India
| | - Jesna Mohan
- Department of Computer Science and Engineering, Mar Baselios College of Engineering and Technology, Thiruvananthapuram, Kerala, India
| | - Shinu Mathew John
- Department ofComputer Science and Engineering, St. Thomas College of Engineeringand Technology, Kannur, Kerala, India
| | - Sivakumar Ramachandran
- Department of Electronics and Communication Engineering, Government Engineering College Wayanad, Kerala, India
| |
Collapse
|
2
|
Kumar GV, Bellary MI, Reddy TB. Prostate cancer classification with MRI using Taylor-Bird Squirrel Optimization based Deep Recurrent Neural Network. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2165242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Goddumarri Vijay Kumar
- Dept. of Computer Science and Technology, Sri Krishnadevaraya University, Ananthapuram, A.P., India
| | - Mohammed Ismail Bellary
- Department of Artificial Intelligence & Machine Learning, P.A. College of Engineering, Managalore, Affiliated to Visvesvaraya Technological University, Belagavi, K.A., India
| | - Thota Bhaskara Reddy
- Dept. of Computer Science and Technology, Sri Krishnadevaraya University, Ananthapuram, A.P., India
| |
Collapse
|
3
|
Hu J, Shen A, Qiao X, Zhou Z, Qian X, Zheng Y, Bao J, Wang X, Dai Y. Dual attention guided multiscale neural network trained with curriculum learning for noninvasive prediction of Gleason Grade Group from MRI. Med Phys 2022; 50:2279-2289. [PMID: 36412164 DOI: 10.1002/mp.16102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Gleason Grade Group (GG) is essential in assessing the malignancy of prostate cancer (PCa) and is typically obtained by invasive biopsy procedures in which sampling errors could lead to inaccurately scored GGs. With the gradually recognized value of bi-parametric magnetic resonance imaging (bpMRI) in PCa, it is beneficial to noninvasively predict GGs from bpMRI for early diagnosis and treatment planning of PCa. However, it is challenging to establish the connection between bpMRI features and GGs. PURPOSE In this study, we propose a dual attention-guided multiscale neural network (DAMS-Net) to predict the 5-scored GG from bpMRI and design a training curriculum to further improve the prediction performance. METHODS The proposed DAMS-Net incorporates a feature pyramid network (FPN) to fully extract the multiscale features for lesions of varying sizes and a dual attention module to focus on lesion and surrounding regions while avoiding the influence of irrelevant ones. Furthermore, to enhance the differential ability for lesions with the inter-grade similarity and intra-grade variation in bpMRI, the training process employs a specially designed curriculum based on the differences between the radiological evaluations and the ground truth GGs. RESULTS Extensive experiments were conducted on a private dataset of 382 patients and the public PROSTATEx-2 dataset. For the private dataset, the experimental results showed that the proposed network performed better than the plain baseline model for GG prediction, achieving a mean quadratic weighted Kappa (Kw ) of 0.4902 and a mean positive predictive value of 0.9098 for predicting clinically significant cancer (PPVGG>1 ). With the application of curriculum learning, the mean Kw and PPVGG>1 further increased to 0.5144 and 0.9118, respectively. For the public dataset, the proposed method achieved state-of-the-art results of 0.5413 Kw and 0.9747 PPVGG>1 . CONCLUSION The proposed DAMS-Net trained with curriculum learning can effectively predict GGs from bpMRI, which may assist clinicians in early diagnosis and treatment planning for PCa patients.
Collapse
Affiliation(s)
- Jisu Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ao Shen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xiaomeng Qiao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xusheng Qian
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yi Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jie Bao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Saliency Transfer Learning and Central-Cropping Network for Prostate Cancer Classification. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Saini M, Susan S. Diabetic retinopathy screening using deep learning for multi-class imbalanced datasets. Comput Biol Med 2022; 149:105989. [PMID: 36037631 DOI: 10.1016/j.compbiomed.2022.105989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
Screening and diagnosis of diabetic retinopathy disease is a well known problem in the biomedical domain. The use of medical imagery from a patient's eye for detecting the damage caused to blood vessels is a part of the computer-aided diagnosis that has immensely progressed over the past few years due to the advent and success of deep learning. The challenges related to imbalanced datasets, inconsistent annotations, less number of sample images and inappropriate performance evaluation metrics has caused an adverse impact on the performance of the deep learning models. In order to tackle the effect caused by class imbalance, we have done extensive comparative analysis between various state-of-the-art methods on three benchmark datasets of diabetic retinopathy: - Kaggle DR detection, IDRiD and DDR, for classification, object detection and segmentation tasks. This research could serve as a concrete baseline for future research in this field to find appropriate approaches and deep learning architectures for imbalanced datasets.
Collapse
Affiliation(s)
- Manisha Saini
- Delhi Technological University, New Delhi, 110042, Delhi, India.
| | - Seba Susan
- Delhi Technological University, New Delhi, 110042, Delhi, India.
| |
Collapse
|
6
|
Pirzad Mashak N, Akbarizadeh G, Farshidi E. A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
Collapse
Affiliation(s)
- Neda Pirzad Mashak
- Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | - Gholamreza Akbarizadeh
- Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ebrahim Farshidi
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Bertelli E, Mercatelli L, Marzi C, Pachetti E, Baccini M, Barucci A, Colantonio S, Gherardini L, Lattavo L, Pascali MA, Agostini S, Miele V. Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI. Front Oncol 2022; 11:802964. [PMID: 35096605 PMCID: PMC8792745 DOI: 10.3389/fonc.2021.802964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa aggressiveness, for which a biopsy is required, is fundamental for patient management. Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative assessment of mpMRI might provide the radiologist with an objective and noninvasive tool for supporting the decision-making in clinical practice and decreasing intra- and inter-reader variability. In this view, high dimensional radiomics features and Machine Learning (ML) techniques, along with Deep Learning (DL) methods working on raw images directly, could assist the radiologist in the clinical workflow. The aim of this study was to develop and validate ML/DL frameworks on mpMRI data to characterize PCas according to their aggressiveness. We optimized several ML/DL frameworks on T2w, ADC and T2w+ADC data, using a patient-based nested validation scheme. The dataset was composed of 112 patients (132 peripheral lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥ 3) acquired following both PI-RADS 2.0 and 2.1 guidelines. Firstly, ML/DL frameworks trained and validated on PI-RADS 2.0 data were tested on both PI-RADS 2.0 and 2.1 data. Then, we trained, validated and tested ML/DL frameworks on a multi PI-RADS dataset. We reported the performances in terms of Area Under the Receiver Operating curve (AUROC), specificity and sensitivity. The ML/DL frameworks trained on T2w data achieved the overall best performance. Notably, ML and DL frameworks trained and validated on PI-RADS 2.0 data obtained median AUROC values equal to 0.750 and 0.875, respectively, on unseen PI-RADS 2.0 test set. Similarly, ML/DL frameworks trained and validated on multi PI-RADS T2w data showed median AUROC values equal to 0.795 and 0.750, respectively, on unseen multi PI-RADS test set. Conversely, all the ML/DL frameworks trained and validated on PI-RADS 2.0 data, achieved AUROC values no better than the chance level when tested on PI-RADS 2.1 data. Both ML/DL techniques applied on mpMRI seem to be a valid aid in predicting PCa aggressiveness. In particular, ML/DL frameworks fed with T2w images data (objective, fast and non-invasive) show good performances and might support decision-making in patient diagnostic and therapeutic management, reducing intra- and inter-reader variability.
Collapse
Affiliation(s)
- Elena Bertelli
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Laura Mercatelli
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Chiara Marzi
- “Nello Carrara” Institute of Applied Physics (IFAC), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Eva Pachetti
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Pisa, Italy
| | - Michela Baccini
- “Giuseppe Parenti” Department of Statistics, Computer Science, Applications(DiSIA), University of Florence, Florence, Italy
- Florence Center for Data Science, University of Florence, Florence, Italy
| | - Andrea Barucci
- “Nello Carrara” Institute of Applied Physics (IFAC), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Sara Colantonio
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
| | - Luca Gherardini
- “Giuseppe Parenti” Department of Statistics, Computer Science, Applications(DiSIA), University of Florence, Florence, Italy
| | - Lorenzo Lattavo
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Maria Antonietta Pascali
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
| | - Simone Agostini
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
8
|
A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset. J Imaging 2021; 7:jimaging7100215. [PMID: 34677301 PMCID: PMC8540196 DOI: 10.3390/jimaging7100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Although prostate cancer is one of the most common causes of mortality and morbidity in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice. The aim of this study was the evaluation of a combined radiomics and machine learning approach on a publicly available dataset in order to distinguish a clinically significant from a clinically non-significant prostate lesion. A total of 299 prostate lesions were included in the analysis. A univariate statistical analysis was performed to prove the goodness of the 60 extracted radiomic features in distinguishing prostate lesions. Then, a 10-fold cross-validation was used to train and test some models and the evaluation metrics were calculated; finally, a hold-out was performed and a wrapper feature selection was applied. The employed algorithms were Naïve bayes, K nearest neighbour and some tree-based ones. The tree-based algorithms achieved the highest evaluation metrics, with accuracies over 80%, and area-under-the-curve receiver-operating characteristics below 0.80. Combined machine learning algorithms and radiomics based on clinical, routine, multiparametric, magnetic-resonance imaging were demonstrated to be a useful tool in prostate cancer stratification.
Collapse
|
9
|
|
10
|
Abraham B, Nair MS. Computer-aided detection of COVID-19 from CT scans using an ensemble of CNNs and KSVM classifier. SIGNAL, IMAGE AND VIDEO PROCESSING 2021; 16:587-594. [PMID: 34422120 PMCID: PMC8365570 DOI: 10.1007/s11760-021-01991-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 05/17/2023]
Abstract
Corona Virus Disease-2019 (COVID-19) is a global pandemic which is spreading briskly across the globe. The gold standard for the diagnosis of COVID-19 is viral nucleic acid detection with real-time polymerase chain reaction (RT-PCR). However, the sensitivity of RT-PCR in the diagnosis of early-stage COVID-19 is less. Recent research works have shown that computed tomography (CT) scans of the chest are effective for the early diagnosis of COVID-19. Convolutional neural networks (CNNs) are proven successful for diagnosing various lung diseases from CT scans. CNNs are composed of multiple layers which represent a hierarchy of features at each level. CNNs require a big number of labeled instances for training from scratch. In medical imaging tasks like the detection of COVID-19 where there is a difficulty in acquiring a large number of labeled CT scans, pre-trained CNNs trained on a huge number of natural images can be employed for extracting features. Feature representation of each CNN varies and an ensemble of features generated from various pre-trained CNNs can increase the diagnosis capability significantly. In this paper, features extracted from an ensemble of 5 different CNNs (MobilenetV2, Shufflenet, Xception, Darknet53 and EfficientnetB0) in combination with kernel support vector machine is used for the diagnosis of COVID-19 from CT scans. The method was tested using a public dataset and it attained an area under the receiver operating characteristic curve of 0.963, accuracy of 0.916, kappa score of 0.8305, F-score of 0.91, sensitivity of 0.917 and positive predictive value of 0.904 in the prediction of COVID-19.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam, Kerala 691601 India
| | - Madhu S. Nair
- Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi, Kerala 682022 India
| |
Collapse
|
11
|
Abraham B, Nair MS. Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier. Biocybern Biomed Eng 2020; 40:1436-1445. [PMID: 32895587 PMCID: PMC7467028 DOI: 10.1016/j.bbe.2020.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Corona virus disease-2019 (COVID-19) is a pandemic caused by novel coronavirus. COVID-19 is spreading rapidly throughout the world. The gold standard for diagnosing COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR) test. However, the facility for RT-PCR test is limited, which causes early diagnosis of the disease difficult. Easily available modalities like X-ray can be used to detect specific symptoms associated with COVID-19. Pre-trained convolutional neural networks are widely used for computer-aided detection of diseases from smaller datasets. This paper investigates the effectiveness of multi-CNN, a combination of several pre-trained CNNs, for the automated detection of COVID-19 from X-ray images. The method uses a combination of features extracted from multi-CNN with correlation based feature selection (CFS) technique and Bayesnet classifier for the prediction of COVID-19. The method was tested using two public datasets and achieved promising results on both the datasets. In the first dataset consisting of 453 COVID-19 images and 497 non-COVID images, the method achieved an AUC of 0.963 and an accuracy of 91.16%. In the second dataset consisting of 71 COVID-19 images and 7 non-COVID images, the method achieved an AUC of 0.911 and an accuracy of 97.44%. The experiments performed in this study proved the effectiveness of pre-trained multi-CNN over single CNN in the detection of COVID-19.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam 691601, Kerala, India
| | - Madhu S Nair
- Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
12
|
Cuocolo R, Cipullo MB, Stanzione A, Romeo V, Green R, Cantoni V, Ponsiglione A, Ugga L, Imbriaco M. Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol 2020; 30:6877-6887. [PMID: 32607629 DOI: 10.1007/s00330-020-07027-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to systematically review the literature and perform a meta-analysis of machine learning (ML) diagnostic accuracy studies focused on clinically significant prostate cancer (csPCa) identification on MRI. METHODS Multiple medical databases were systematically searched for studies on ML applications in csPCa identification up to July 31, 2019. Two reviewers screened all papers independently for eligibility. The area under the receiver operating characteristic curves (AUC) was pooled to quantify predictive accuracy. A random-effects model estimated overall effect size while statistical heterogeneity was assessed with the I2 value. A funnel plot was used to investigate publication bias. Subgroup analyses were performed based on reference standard (biopsy or radical prostatectomy) and ML type (deep and non-deep). RESULTS After the final revision, 12 studies were included in the analysis. Statistical heterogeneity was high both in overall and in subgroup analyses. The overall pooled AUC for ML in csPCa identification was 0.86, with 0.81-0.91 95% confidence intervals (95%CI). The biopsy subgroup (n = 9) had a pooled AUC of 0.85 (95%CI = 0.79-0.91) while the radical prostatectomy one (n = 3) of 0.88 (95%CI = 0.76-0.99). Deep learning ML (n = 4) had a 0.78 AUC (95%CI = 0.69-0.86) while the remaining 8 had AUC = 0.90 (95%CI = 0.85-0.94). CONCLUSIONS ML pipelines using prostate MRI to identify csPCa showed good accuracy and should be further investigated, possibly with better standardisation in design and reporting of results. KEY POINTS • Overall pooled AUC was 0.86 with 0.81-0.91 95% confidence intervals. • In the reference standard subgroup analysis, algorithm accuracy was similar with pooled AUCs of 0.85 (0.79-0.91 95% confidence intervals) and 0.88 (0.76-0.99 95% confidence intervals) for studies employing biopsies and radical prostatectomy, respectively. • Deep learning pipelines performed worse (AUC = 0.78, 0.69-0.86 95% confidence intervals) than other approaches (AUC = 0.90, 0.85-0.94 95% confidence intervals).
Collapse
Affiliation(s)
- Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Maria Brunella Cipullo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Cantoni
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Thampi SM, El-Alfy ESM. Soft computing and intelligent systems: techniques and applications. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sabu M. Thampi
- Indian Institute of Information Technology and Management-Kerala, Technopark Campus, Trivandrum, Kerala State, India
| | - El-Sayed M. El-Alfy
- Department Information and Computer Science, College of Computer Sciences and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
14
|
Abraham B, Nair MS. Automated grading of prostate cancer using convolutional neural network and ordinal class classifier. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|