1
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
Ghori FF, Wahid M. Induced pluripotent stem cells derived cardiomyocytes from Duchenne Muscular Dystrophy patients in vitro. Pak J Med Sci 2021; 37:1376-1381. [PMID: 34475915 PMCID: PMC8377888 DOI: 10.12669/pjms.37.5.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 04/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study aimed at the in vitro generation of DMD-cardiomyocytes from patient-specific induced pluripotent stem cells derived from a Pakistani patient for future work on DMD in vitro disease modeling and drug testing for efficacy and toxicity. METHODS This in vitro experimental study was carried out from December 2018 to January 2019 at Stem Cells and Regenerative Medicine Lab (SCRML) at Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS) Urine derived DMD-iPSCs were used which had been generated previously from a Pakistani DMD patient who had been selected through non-random purposive sampling. These were differentiated towards cardiomyocytes using Cardiomyocytes Differentiation media having specified growth factors and then the molecular characterization of the differentiated cells was done using immunofluorescence. RESULTS Pakistani patient's DMD-Cardiomyocytes were generated and their identity was confirmed by positive immunofluorescence for the expression of cardiac markers NKX2-5 and TNNT-2. CONCLUSION This study aimed for in vitro generation of DMD cardiomyocytes for future application in disease modeling, new drug testing for efficacy and toxicity, as well as for drug-testing for tailored personalized therapy. To the best of our knowledge, this was the first time DMD-Cardiomyocytes were generated from Pakistani DMD patients using their own induced pluripotent stem cells.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Fareeha Faizan Ghori, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Mohsin Wahid, Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan. Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
3
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
4
|
Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes (Basel) 2020; 11:genes11070765. [PMID: 32650403 PMCID: PMC7397028 DOI: 10.3390/genes11070765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive condition caused primarily by out-of-frame mutations in the dystrophin gene. In males, DMD presents with progressive body-wide muscle deterioration, culminating in death as a result of cardiac or respiratory failure. A milder form of DMD exists, called Becker muscular dystrophy (BMD), which is typically caused by in-frame dystrophin gene mutations. It should be emphasized that DMD and BMD are not exclusive to males, as some female dystrophin mutation carriers do present with similar symptoms, generally at reduced levels of severity. Cardiac involvement in particular is a pressing concern among manifesting females, as it may develop into serious heart failure or could predispose them to certain risks during pregnancy or daily life activities. It is known that about 8% of carriers present with dilated cardiomyopathy, though it may vary from 0% to 16.7%, depending on if the carrier is classified as having DMD or BMD. Understanding the genetic and molecular mechanisms underlying cardiac manifestations in dystrophin-deficient females is therefore of critical importance. In this article, we review available information from the literature on this subject, as well as discuss the implications of female carrier studies on the development of therapies aiming to increase dystrophin levels in the heart.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Narin Sheri
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
5
|
Nguyen Q, Lim KRQ, Yokota T. Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. Int J Mol Sci 2020; 21:E733. [PMID: 31979133 PMCID: PMC7036815 DOI: 10.3390/ijms21030733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathies are diseases of heart muscle, a significant percentage of which are genetic in origin. Cardiomyopathies can be classified as dilated, hypertrophic, restrictive, arrhythmogenic right ventricular or left ventricular non-compaction, although mixed morphologies are possible. A subset of neuromuscular disorders, notably Duchenne and Becker muscular dystrophies, are also characterized by cardiomyopathy aside from skeletal myopathy. The global burden of cardiomyopathies is certainly high, necessitating further research and novel therapies. Genome editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as increasingly important technologies in studying this group of cardiovascular disorders. In this review, we discuss the applications of genome editing in the understanding and treatment of cardiomyopathy. We also describe recent advances in genome editing that may help improve these applications, and some future prospects for genome editing in cardiomyopathy treatment.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
6
|
Podkalicka P, Mucha O, Dulak J, Loboda A. Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 2019; 76:1507-1528. [PMID: 30770952 PMCID: PMC6439152 DOI: 10.1007/s00018-019-03006-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
7
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
8
|
Matloka M, Klein AF, Rau F, Furling D. Cells of Matter- In Vitro Models for Myotonic Dystrophy. Front Neurol 2018; 9:361. [PMID: 29875732 PMCID: PMC5974047 DOI: 10.3389/fneur.2018.00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic disorder mainly characterized by myotonia, progressive muscle weakness and wasting, cognitive impairments, and cardiac defects. This autosomal dominant disease is caused by the expression of nuclear retained RNAs containing pathologic expanded CUG repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable knowledge has been gathered on myotonic dystrophy since its first description, the development of novel relevant disease models remains of high importance to investigate pathophysiologic mechanisms and to assess new therapeutic approaches. In addition to animal models, in vitro cell cultures provide a unique resource for both fundamental and translational research. This review discusses how cellular models broke ground to decipher molecular basis of DM1 and describes currently available cell models, ranging from exogenous expression of the CTG tracts to variable patients' derived cells.
Collapse
Affiliation(s)
| | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
9
|
Dinarelli S, Girasole M, Spitalieri P, Talarico RV, Murdocca M, Botta A, Novelli G, Mango R, Sangiuolo F, Longo G. AFM nano-mechanical study of the beating profile of hiPSC-derived cardiomyocytes beating bodies WT and DM1. J Mol Recognit 2018; 31:e2725. [PMID: 29748973 DOI: 10.1002/jmr.2725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Myotonic Dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults, characterized by a variety of multisystemic features and associated with cardiac anomalies. Among cardiac phenomena, conduction defects, ventricular arrhythmias, and dilated cardiomyopathy represent the main cause of sudden death in DM1 patients. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful in vitro model for molecular, biochemical, and physiological studies of disease in the target cells. Here, we used an Atomic Force Microscope (AFM) to measure the beating profiles of a large number of cells, organized in CM clusters (Beating Bodies, BBs), obtained from wild type (WT) and DM1 patients. We monitored the evolution over time of the frequency and intensity of the beating. We determined the variations between different BBs and over various areas of a single BB, caused by morphological and biomechanical variations. We exploited the AFM tip to apply a controlled force over the BBs, to carefully assess the biomechanical reaction of the different cell clusters over time, both in terms of beating frequency and intensity. Our measurements demonstrated differences between the WT and DM1 clusters highlighting, for the DM1 samples, an instability which was not observed in WT cells. We measured differences in the cellular response to the applied mechanical stimulus in terms of beating synchronicity over time and cell tenacity, which are in good agreement with the cellular behavior in vivo. Overall, the combination of hiPSC-CMs with AFM characterization can become a new tool to study the collective movements of cell clusters in different conditions and can be extended to the characterization of the BB response to chemical and pharmacological stimuli.
Collapse
Affiliation(s)
- S Dinarelli
- Institute for the Structure of Matter, CNR, Rome, Italy
| | - M Girasole
- Institute for the Structure of Matter, CNR, Rome, Italy
| | - P Spitalieri
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - R V Talarico
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - M Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - A Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - R Mango
- Department of Emergency and Critical Care, Polyclinic Tor Vergata, Rome, Italy
| | - F Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - G Longo
- Institute for the Structure of Matter, CNR, Rome, Italy
| |
Collapse
|
10
|
Geraets IME, Chanda D, van Tienen FHJ, van den Wijngaard A, Kamps R, Neumann D, Liu Y, Glatz JFC, Luiken JJFP, Nabben M. Human embryonic stem cell-derived cardiomyocytes as an in vitro model to study cardiac insulin resistance. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1960-1967. [PMID: 29277329 DOI: 10.1016/j.bbadis.2017.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
Patients with type 2 diabetes (T2D) and/or insulin resistance (IR) have an increased risk for the development of heart failure (HF). Evidence indicates that this increased risk is linked to an altered cardiac substrate preference of the insulin resistant heart, which shifts from a balanced utilization of glucose and long-chain fatty acids (FAs) towards an almost complete reliance on FAs as main fuel source. This shift leads to a loss of endosomal proton pump activity and increased cardiac fat accumulation, which eventually triggers cardiac dysfunction. In this review, we describe the advantages and disadvantages of currently used in vitro models to study the underlying mechanism of IR-induced HF and provide insight into a human in vitro model: human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Using functional metabolic assays we demonstrate that, similar to rodent studies, hESC-CMs subjected to 16h of high palmitate (HP) treatment develop the main features of IR, i.e., decreased insulin-stimulated glucose and FA uptake, as well as loss of endosomal acidification and insulin signaling. Taken together, these data propose that HP-treated hESC-CMs are a promising in vitro model of lipid overload-induced IR for further research into the underlying mechanism of cardiac IR and for identifying new pharmacological agents and therapeutic strategies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Ilvy M E Geraets
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Dipanjan Chanda
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Florence H J van Tienen
- Department of Clinical Genetics, Maastricht University Medical Centre(+) (MUMC(+)), Maastricht, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre(+) (MUMC(+)), Maastricht, The Netherlands
| | - Rick Kamps
- Department of Clinical Genetics, Maastricht University Medical Centre(+) (MUMC(+)), Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Yilin Liu
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Wilson K, Faelan C, Patterson-Kane JC, Rudmann DG, Moore SA, Frank D, Charleston J, Tinsley J, Young GD, Milici AJ. Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicol Pathol 2017; 45:961-976. [PMID: 28974147 DOI: 10.1177/0192623317734823] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are neuromuscular disorders that primarily affect boys due to an X-linked mutation in the DMD gene, resulting in reduced to near absence of dystrophin or expression of truncated forms of dystrophin. Some newer therapeutic interventions aim to increase sarcolemmal dystrophin expression, and accurate dystrophin quantification is critical for demonstrating pharmacodynamic relationships in preclinical studies and clinical trials. Current challenges with measuring dystrophin include the variation in protein expression within individual muscle fibers and across whole muscle samples, the presence of preexisting dystrophin-positive revertant fibers, and trace amounts of residual dystrophin. Immunofluorescence quantification of dystrophin can overcome many of these challenges, but manual quantification of protein expression may be complicated by variations in the collection of images, reproducible scoring of fluorescent intensity, and bias introduced by manual scoring of typically only a few high-power fields. This review highlights the pathology of DMD and BMD, discusses animal models of DMD and BMD, and describes dystrophin biomarker quantitation in DMD and BMD, with several image analysis approaches, including a new automated method that evaluates protein expression of individual muscle fibers.
Collapse
Affiliation(s)
- Kristin Wilson
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | - Crystal Faelan
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | | | | - Steven A Moore
- 2 Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Diane Frank
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jay Charleston
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jon Tinsley
- 4 Summit Therapeutics, Abingdon, United Kingdom
| | - G David Young
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | |
Collapse
|