1
|
Sönmez B, Kocabey M, Polat Aİ, Gürsoy S, Karaoğlu P, Rita Horvath, Schon KR, Ülgenalp A, Yiş U, Çağlayan AO, Giray Bozkaya Ö. A Novel Splice Site Variant in KLHL40 Gene in Multiple Affected NEM8 Family Members Who Present Phenotypic Variability. Mol Syndromol 2025; 16:61-68. [PMID: 39911178 PMCID: PMC11793885 DOI: 10.1159/000540325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Nemaline myopathy (NEM) is a heterogeneous muscle disease, which usually presents with hypotonia and muscle weakness. Biallelic pathogenic variants of KLHL40 gene cause severe form of NEM (NEM8), which leads to a wide range of symptoms, including hypotonia, muscle weakness, joint contractures and fractures. Nemaline bodies in muscle fiber are characteristic findings of the disease. Case Presentation Here, we presented three affected individuals in a family with variable phenotypes, in whom the same novel splice-site variant in KLHL40 gene (c.1607+3A>T) was detected. Discussion This study expanded the spectrum of genotype and phenotype of NEM8, and emphasized that molecular genetic tests are highly valuable in diagnosis of patients with inconclusive muscle biopsy results.
Collapse
Affiliation(s)
- Beria Sönmez
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Kocabey
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe İpek Polat
- Division of Child Neurology, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Semra Gürsoy
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Pakize Karaoğlu
- Division of Pediatric Neurology, Department of Pediatrics, İzmir Faculty of Medicine, Dr. Behçet Uz Children’s Education and Research Hospital, University of Health Sciences Türkiye, Izmir, Turkey
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katherine R. Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ayfer Ülgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Uluç Yiş
- Division of Child Neurology, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Özlem Giray Bozkaya
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
2
|
Voermans NC, Dittrich ATM, Liguori S, Panicucci C, Moretti A, Weber DR, Ward LM. 274th ENMC international workshop: recommendations for optimizing bone strength in neuromuscular disorders. Hoofddorp, The Netherlands, 19-21 January 2024. Neuromuscul Disord 2024; 43:1-13. [PMID: 39173540 DOI: 10.1016/j.nmd.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
The 274th ENMC workshop for optimizing bone strength in neuromuscular disorders (NMDs) was held on January 19-21, 2024. The group of participants included experts in the fields of bone health and neuromuscular medicine along with the patient voice. Bone strength represents a crucial aspect of the management of pediatric and adult patients with NMDs. Bone strength may be compromised due to different pathophysiologic mechanisms, including disrupted bone-muscle "cross-talk", loss of biomechanical loading, nutritional insufficiency, inadequate weight-bearing physical activity, muscle weakness and/or immobility, and drug treatment. While for Duchenne muscular dystrophy recommendations for evaluation and treatment of bone strength have been published, evidence on bone strength in other hereditary and acquired NMDs is scarce. Enhanced knowledge is needed to understand the development and maintenance of bone strength in patients with NMDs. This workshop aimed to develop a strategy to improve bone strength and thus prevent fractures in patients with NMDs.
Collapse
Affiliation(s)
- Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anne T M Dittrich
- Department of Pediatrics, Radboud University Medical Center, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - David R Weber
- Division of Endocrinology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Smeets H, Verbrugge B, Bulbena X, Hristova L, Vogt J, van Beckhoven I. European Joint Programme on Rare Diseases workshop: LAMA2-muscular dystrophy: paving the road to therapy March 17-19, 2023, Barcelona, Spain. Neuromuscul Disord 2024; 36:16-22. [PMID: 38306718 DOI: 10.1016/j.nmd.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The European Joint Programme on Rare Diseases (EJPRD) funded the workshop "LAMA2-Muscular Dystrophy: Paving the road to therapy", bringing together 40 health-care professionals, researchers, patient-advocacy groups, Early-Career Scientists and other stakeholders from 14 countries. Progress in natural history, pathophysiology, trial readiness, and treatment strategies was discussed together with efforts to increase patient-awareness and strengthen collaborations. Key outcomes were (a) ongoing natural history studies in 7 countries already covered more than 350 patients. The next steps are to include additional countries, harmonise data collection and define a minimal dataset; (b) therapy development was largely complementary. Approaches included LAMA2-replacement and correction, LAMA1-reactivation, mRNA modulation, linker-protein expression, targeting downstream processes and identifying modifiers, using viral vectors, muscle stem cells, iPSC and mouse models and patient lines; (c) LAMA2-Europe will inform patients (-representatives) worldwide on standards of care and scientific progress, and enable sharing experiences. Follow-up monthly online meetings and research repositories have been established to create sustainable collaborations.
Collapse
Affiliation(s)
- Hubert Smeets
- Department of Toxicogenomics, Research Institutes MHeNS and GROW, Maastricht University, UNS40 Maastricht 6229ER, the Netherlands.
| | - Bram Verbrugge
- LAMA2-MD Foundation "Voor Sara", Dordrecht, the Netherlands
| | | | | | - Julia Vogt
- Maastricht University, Maastricht, the Netherlands
| | | |
Collapse
|
4
|
Lehtonen J, Sulonen AM, Almusa H, Lehtokari VL, Johari M, Palva A, Hakonen AH, Wartiovaara K, Lehesjoki AE, Udd B, Wallgren-Pettersson C, Pelin K, Savarese M, Saarela J. Haplotype information of large neuromuscular disease genes provided by linked-read sequencing has a potential to increase diagnostic yield. Sci Rep 2024; 14:4306. [PMID: 38383731 PMCID: PMC10881483 DOI: 10.1038/s41598-024-54866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e. phasing information of the variants is missing. Segregation analysis increases the diagnostic turnaround time and is not always possible if samples from family members are lacking. To overcome this difficulty, we investigated how well the linked-read technology succeeded to phase variants in these large genes, and whether it improved the identification of structural variants. Linked-read sequencing data of nemaline myopathy, distal myopathy, and proximal myopathy patients were analyzed for phasing, single nucleotide variants, and structural variants. Variant phasing was successful in the large muscle genes studied. The longest continuous phase blocks were gained using high-quality DNA samples with long DNA fragments. Homozygosity increased the number of phase blocks, especially in exome sequencing samples lacking intronic variation. In our cohort, linked-read sequencing added more information about the structural variation but did not lead to a molecular genetic diagnosis. The linked-read technology can support the clinical diagnosis of neuromuscular and other genetic disorders.
Collapse
Affiliation(s)
- Johanna Lehtonen
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna-Maija Sulonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Aino Palva
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna H Hakonen
- Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Janna Saarela
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Vasterling ME, Maitski RJ, Davis BA, Barnes JE, Kelkar RA, Klapper RJ, Patel H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. AMONDYS 45 (Casimersen), a Novel Antisense Phosphorodiamidate Morpholino Oligomer: Clinical Considerations for Treatment in Duchenne Muscular Dystrophy. Cureus 2023; 15:e51237. [PMID: 38283433 PMCID: PMC10821770 DOI: 10.7759/cureus.51237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
AMONDYS 45 (casimersen) is an antisense oligonucleotide therapy used to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder characterized by a mutation in the DMD gene. Symptoms include progressive muscle weakness, respiratory and cardiac complications, and premature death. Casimersen targets a specific mutation in the DMD gene that results in the absence of dystrophin protein, a key structural component of muscle fibers. While there is currently no cure for DMD, exon-skipping therapy works by restoring the reading frame of the mutated gene, allowing the production of a partially functional dystrophin protein. Clinical trials of casimersen have shown promising results in increasing dystrophin production, as measured by polymerase chain reaction (PCR) droplets when compared to placebo. In a randomized double-blind trial, patients who received casimersen had significantly higher dystrophin levels when compared to those who received placebo. Casimersen therapy is administered through repeated intravenous infusions, although the optimal dosage and duration of treatment are still under investigation. Based on the completed and ongoing clinical trials, casimersen has been well tolerated, with most adverse events being mild and unrelated to casimersen. In 2021, AMONDYS 45 (casimersen) received approval from the US Food and Drug Administration (FDA) for the treatment of Duchene muscular dystrophy in patients with a mutation of the DMD gene that is amenable to exon 45 skipping. These collective findings indicate that casimersen has the potential to elicit functional changes in individuals with DMD, although further studies are necessary to comprehensively evaluate the specific functional improvements. Regardless, the FDA approval and ongoing clinic trials mark a significant milestone in the development of DMD treatments and offer hope for those affected by this debilitating disease.
Collapse
Affiliation(s)
- Megan E Vasterling
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rebecca J Maitski
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Brice A Davis
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Julie E Barnes
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Hirni Patel
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
6
|
Bouman K, Groothuis JT, Doorduin J, van Alfen N, Udink ten Cate FE, van den Heuvel FM, Nijveldt R, Kamsteeg EJ, Dittrich AT, Draaisma JM, Janssen MC, van Engelen BG, Erasmus CE, Voermans NC. SELENON-Related Myopathy Across the Life Span, a Cross-Sectional Study for Preparing Trial Readiness. J Neuromuscul Dis 2023; 10:1055-1074. [PMID: 37807786 PMCID: PMC10657684 DOI: 10.3233/jnd-221673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND SELENON(SEPN1)-related myopathy (SELENON-RM) is a rare congenital neuromuscular disease characterized by proximal and axial muscle weakness, spinal rigidity, scoliosis and respiratory impairment. No curative treatment options exist, but promising preclinical studies are ongoing. Currently, natural history data are lacking, while selection of appropriate clinical and functional outcome measures is needed to reach trial readiness. OBJECTIVE We aim to identify all Dutch and Dutch-speaking Belgian SELENON-RM patients, deep clinical phenotyping, trial readiness and optimization of clinical care. METHODS This cross-sectional, single-center, observational study comprised neurological examination, functional measurements including Motor Function Measurement 20/32 (MFM-20/32) and accelerometry, questionnaires, muscle ultrasound, respiratory function tests, electro- and echocardiography, and dual-energy X-ray absorptiometry. RESULTS Eleven patients with genetically confirmed SELENON-RM were included (20±13 (3-42) years, 73% male). Axial and proximal muscle weakness were most pronounced. The mean MFM-20/32 score was 71.2±15.1%, with domain 1 (standing and transfers) being most severely affected. Accelerometry showed a strong correlation with MFM-20/32. Questionnaires revealed impaired quality of life, pain and problematic fatigue. Muscle ultrasound showed symmetrically increased echogenicity in all muscles. Respiratory function, and particularly diaphragm function, was impaired in all patients, irrespective of the age. Cardiac assessment showed normal left ventricular systolic function in all patients but abnormal left ventricular global longitudinal strain in 43% of patients and QRS fragmentation in 80%. Further, 80% of patients showed decreased bone mineral density on dual-energy X-ray absorptiometry scan and 55% of patients retrospectively experienced fragility long bone fractures. CONCLUSIONS We recommend cardiorespiratory follow-up as a part of routine clinical care in all patients. Furthermore, we advise vitamin D supplementation and optimization of calcium intake to improve bone quality. We recommend management interventions to reduce pain and fatigue. For future clinical trials, we propose MFM-20/32, accelerometry and muscle ultrasound to capture disease severity and possibly disease progression.
Collapse
Affiliation(s)
- Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan T. Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Floris E.A. Udink ten Cate
- Department of Pediatric cardiology, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Robin Nijveldt
- Department of Cardiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Anne T.M. Dittrich
- Department of Pediatrics, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, The Netherlands
| | - Jos M.T. Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, The Netherlands
| | - Mirian C.H. Janssen
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Corrie E. Erasmus
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|