1
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024; 11:2891-2903. [PMID: 39291779 PMCID: PMC11572749 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Huihui Cai
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wenyi Kou
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chen Yang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Siming Li
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bingxu Zhu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jiayi Wu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical PsychologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tao Feng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohong Li
- Department of NeurologyAffiliated Dalian Municipal Friendship Hospital of Dalian Medical UniversityDalianChina
| | - Fulong Xiao
- Division of Sleep MedicinePeking University People's HospitalBeijingChina
| | - Zhenwei Yu
- Department of PathophysiologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
3
|
Simonet C, Pérez-Carbonell L, Galmés-Ordinas MA, Huxford BFR, Chohan H, Gill A, Leschziner G, Lees AJ, Schrag A, Noyce AJ. The Motor Dysfunction Seen in Isolated REM Sleep Behavior Disorder. Mov Disord 2024; 39:1054-1059. [PMID: 38470080 DOI: 10.1002/mds.29779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Isolated Rapid Eye Movement (REM) sleep Behavior Disorder (iRBD) requires quantitative tools to detect incipient Parkinson's disease (PD). METHODS A motor battery was designed and compared with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) in people with iRBD and controls. This included two keyboard-based tests (BRadykinesia Akinesia INcoordination tap test and Distal Finger Tapping) and two dual tasking tests (walking and finger tapping). RESULTS We included 33 iRBD patients and 29 controls. The iRBD group performed both keyboard-based tapping tests more slowly (P < 0.001, P = 0.020) and less rhythmically (P < 0.001, P = 0.006) than controls. Unlike controls, the iRBD group increased their walking duration (P < 0.001) and had a smaller amplitude (P = 0.001) and slower (P = 0.007) finger tapping with dual task. The combination of the most salient motor markers showed 90.3% sensitivity for 89.3% specificity (area under the ROC curve [AUC], 0.94), which was higher than the MDS-UPDRS-III (minus action tremor) (69.7% sensitivity, 72.4% specificity; AUC, 0.81) for detecting motor dysfunction. CONCLUSION Speed, rhythm, and dual task motor deterioration might be accurate indicators of incipient PD in iRBD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cristina Simonet
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Brook F R Huxford
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Harneek Chohan
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Aneet Gill
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Guy Leschziner
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew J Lees
- Reta Lila Weston Institute, Institute of Neurology, UCL and National Hospital, London, United Kingdom
| | - Anette Schrag
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Cogné É, Postuma RB, Chasles MJ, De Roy J, Montplaisir J, Pelletier A, Rouleau I, Gagnon JF. Montreal Cognitive Assessment and the Clock Drawing Test to Identify MCI and Predict Dementia in Isolated REM Sleep Behavior Disorder. Neurology 2024; 102:e208020. [PMID: 38271662 DOI: 10.1212/wnl.0000000000208020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/03/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with isolated/idiopathic REM sleep behavior disorder (iRBD) are at high risk for developing mild cognitive impairment (MCI) and dementia with Lewy bodies (DLB). However, there is a lack of scientific knowledge regarding the accuracy of cognitive screening tools to identify these conditions in iRBD. This study aimed to determine in iRBD the psychometrics of 2 screening tests to discriminate patients with MCI and those at risk of DLB. METHODS We retrospectively selected and followed 64 patients with polysomnography-confirmed iRBD seen in sleep clinic between 2006 and 2021, 32 with MCI (mean age 68.44 years, 72% men), 32 without MCI (67.78 years, 66% men), and 32 controls (69.84 years, 47% men). Participants underwent a neurologic evaluation and neuropsychological assessment for MCI diagnosis. They also completed the Montreal Cognitive Assessment (MoCA) and Clock Drawing Test (CDT). Fifty-three patients were followed (mean of 5.10 ± 2.64 years); 6 developed DLB, and 16 developed Parkinson disease. An independent cohort of 10 patients with iRBD who later developed DLB was also recruited and followed. Receiver operating characteristic curves with area under the curve (AUC) were performed assessing the discriminant value of the MoCA and CDT. RESULTS The cut-off values that best differentiated patients who developed DLB from controls were on the MoCA total score (≤25/30 with 100% [95% CI 61%-100%] sensitivity and 78% [61%-89%] specificity, AUC = 0.888) and delayed recall (≤3/5 with 83% [44%-97%] sensitivity and 78% [61%-89%] specificity, AUC = 0.875). Both values yielded a sensitivity of 90% (60%-98%) to detect patients at risk of DLB in the independent cohort. Cutoffs that best discriminated patients with MCI from controls were: ≤25/30 (MoCA total score) with 72% [55%-84%] sensitivity, 78% [61%-89%] specificity, AUC = 0.803 and ≤2/5 (MoCA delayed recall) with 63% [45%-77%] sensitivity, 94% [80%-98%] specificity, AUC = 0.843. No acceptable optimal values were found for the CDT. DISCUSSION In iRBD, the MoCA demonstrates adequate psychometric properties to identify patients most at risk of developing DLB and to screen for MCI, whereas the CDT does not. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the MoCA, but not the CDT, is useful in screening patients with iRBD for the risk of developing DLB.
Collapse
Affiliation(s)
- Émile Cogné
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Ronald B Postuma
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Marie-Joëlle Chasles
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Jessie De Roy
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Jacques Montplaisir
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Amélie Pelletier
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Isabelle Rouleau
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| | - Jean-François Gagnon
- From the Department of Psychology (É.C., M.-J.C., J.D.R., I.R., J.-F.G.), Université du Québec à Montréal; Centre for Advanced Research in Sleep Medicine (É.C., R.P., J.D.R., J.M., A.P., J.-F.G.), Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P.), Montreal Neurological Institute; Centre de Recherche du CHUM (M.-J.C., I.R.), Montreal, and Department of Psychiatry (J.M.), Université de Montréal, Quebec, Canada
| |
Collapse
|
5
|
Fernandes M, Maio S, Eusebi P, Placidi F, Izzi F, Spanetta M, De Masi C, Lupo C, Calvello C, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. Cerebrospinal-fluid biomarkers for predicting phenoconversion in patients with isolated rapid-eye movement sleep behavior disorder. Sleep 2024; 47:zsad198. [PMID: 37542734 DOI: 10.1093/sleep/zsad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Indexed: 08/07/2023] Open
Abstract
STUDY OBJECTIVES Patients with isolated rapid-eye-movement sleep behavior disorder (iRBD) have an increased risk of developing neurodegenerative diseases. This study assessed cerebrospinal-fluid (CSF) biomarkers of neurodegeneration and blood-brain barrier (BBB) alteration in patients with iRBD compared to controls and ascertain whether these biomarkers may predict phenoconversion to alpha-synucleinopathies (Parkinson's Disease (PD), Dementia with Lewy bodies (DLB), Multiple System Atrophy (MSA)). METHODS Patients and controls underwent between 2012 and 2016 a neurological assessment, a lumbar puncture for CSF biomarker analysis (β-amyloid42 - Aβ42; total-tau, and phosphorylated tau), and BBB alteration (CSF/serum albumin ratio). All patients with iRBD were followed until 2021 and then classified into patients who converted to alpha-synucleinopathies (iRBD converters, cRBD) or not (iRBD non-converters, ncRBD). RESULTS Thirty-four patients with iRBD (mean age 67.12 ± 8.14) and 33 controls (mean age 64.97 ± 8.91) were included. At follow-up (7.63 ± 3.40 years), eight patients were ncRBD and 33 patients were cRBD: eleven converted to PD, 10 to DLB, and two to MSA. Patients with iRBD showed lower CSF Aβ42 levels and higher CSF/serum albumin ratio than controls. Cox regression analysis showed that the phenoconversion rate increases with higher motor impairment (hazard ratio [HR] = 1.23, p = 0.032). CSF Aβ42 levels predicted phenoconversion to DLB (HR = 0.67, p = 0.038) and BBB alteration predicted phenoconversion to PD (HR = 1.20, p = 0.038). DISCUSSION This study showed that low CSF Aβ42 levels and high BBB alteration may predict the phenoconversion to DLB and PD in patients with iRBD, respectively. These findings highlight the possibility to discriminate phenoconversion in iRBD patients through CSF biomarkers; however, further studies are needed.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Silvia Maio
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Paolo Eusebi
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Claudia De Masi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Clementina Lupo
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Liu J, Zou X, Gu J, Yu Q, Dong Z, Zuo H, Chen X, Du X, Zou D, Han Y, Peng J, Cheng O. Altered connectivity in the cognitive control-related prefrontal cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Brain Imaging Behav 2023; 17:702-714. [PMID: 37721659 DOI: 10.1007/s11682-023-00796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism is not clear. The prefrontal cortex (PFC), especially ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and inferior frontal gyrus (IFG) which may play roles by regulating cognitive control processes. The purpose of this study was to investigate whether there is abnormal functional connectivity (FC) maps and volume changes in PD with RBD(PD-RBD). We recruited 20 PD-RBD, 20 PD without RBD (PD-nRBD), and 20 normal controls (NC). We utilized resting-state functional Magnetic Resonance Imaging (rs-MRI) to explore FC changes based on regions of interest (VLPFC, DLPFC, and IFG), and used voxel-based morphology technology to analyze whole-brain volumes by 3D-T1 structural MRI. Except the REM sleep behavioral disorders questionnaire (RBDSQ), the PD-RBD showed lower visuospatial/executive and attention scores than the NC group. The RBDSQ scores were significantly positively correlated with zFC of right DLPFC to bilateral posterior cingulate cortex (PCC) (P = 0.0362, R = 0.4708, AlphaSim corrected) and also significantly positively correlated with zFC of left VLPFC to right inferior temporal (P = 0.0157, R = 0.5323, AlphaSim corrected) in PD-RBD group. Furthermore, abnormal correlations with zFC values were also found in some cognitive subdomains in PD-RBD group. The study may suggest that in PD-RBD patients, the presence of RBD may be related to the abnormal FC of VLPFC and DLPFC, meanwhile, the abnormal FC of DLPFC and IFG may be related to the mechanisms of cognitive impairment.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoya Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jinming Gu
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Zhaoying Dong
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Hongzhou Zuo
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaocui Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Du
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Peng
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wu L, Lin Y, Song J, Li L, Rao X, Wan W, Wei G, Hua F, Ying J. TMEM175: A lysosomal ion channel associated with neurological diseases. Neurobiol Dis 2023; 185:106244. [PMID: 37524211 DOI: 10.1016/j.nbd.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Lysosomes are acidic intracellular organelles with autophagic functions that are critical for protein degradation and mitochondrial homeostasis, while abnormalities in lysosomal physiological functions are closely associated with neurological disorders. Transmembrane protein 175 (TMEM175), an ion channel in the lysosomal membrane that is essential for maintaining lysosomal acidity, has been proven to coordinate with V-ATPase to modulate the luminal pH of the lysosome to assist the digestion of abnormal proteins and organelles. However, there is considerable controversy about the characteristics of TMEM175. In this review, we introduce the research progress on the structural, modulatory, and functional properties of TMEM175, followed by evidence of its relevance for neurological disorders. Finally, we discuss the potential value of TMEM175 as a therapeutic target in the hope of providing new directions for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Longshan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| |
Collapse
|
8
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Sumi Y, Masuda F, Kadotani H, Ozeki Y. The prevalence of depression in isolated/idiopathic rapid eye movement sleep behavior disorder: A systematic review and meta-analysis. Sleep Med Rev 2022; 65:101684. [DOI: 10.1016/j.smrv.2022.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
10
|
Ye G, Xu X, Zhou L, Zhao A, Zhu L, Liu J. Evolution patterns of probable REM sleep behavior disorder predicts Parkinson's disease progression. NPJ Parkinsons Dis 2022; 8:36. [PMID: 35383198 PMCID: PMC8983711 DOI: 10.1038/s41531-022-00303-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
The course of REM sleep behavior disorder (RBD) variates in the early stage of Parkinson's disease. We aimed to delineate the association between the evolution pattern of probable RBD (pRBD) and the progression of Parkinson's disease (PD). 281 de novo PD patients from the Parkinson's Progression Markers Initiative database were included. Patients were followed up for a mean of 6.8 years and were classified into different groups according to the evolution patterns of pRBD. Disease progression was compared among groups using survival analysis, where the endpoint was defined as progression to Hoehn-Yahr stage 3 or higher for motor progression and progression to mild cognitive impairment for cognitive decline. At the 4th year of follow-up, four types of pRBD evolution patterns were identified: (1) non-RBD-stable (55.5%): patients persistently free of pRBD; (2) late-RBD (12.1%): patients developed pRBD during follow-up; (3) RBD-stable (24.9%): patients showed persistent pRBD, and (4) RBD-reversion (7.5%): patients showed pRBD at baseline which disappeared during follow-up. The RBD-reversion type showed the fastest motor progression while the RBD-stable type showed the fastest cognitive decline. At baseline, the RBD-reversion type showed the most severe gray matter atrophy in the middle frontal gyrus, while the RBD-stable type showed gray matter atrophy mainly in the para-hippocampal gyrus. Four types of early pRBD evolution patterns featured different brain lesions and predicted different courses of motor and cognitive decline in PD.
Collapse
Affiliation(s)
- Guanyu Ye
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Wang C, Chen F, Li Y, Liu J. Possible predictors of phenoconversion in isolated REM sleep behaviour disorder: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:395-403. [PMID: 34937751 DOI: 10.1136/jnnp-2021-328062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A number of promising biomarkers for predicting imminent α-synucleinopathies have been suggested in isolated rapid eye movement sleep behaviour disorder (iRBD). However, existing evidence is conflicting without quantitative evaluation. METHODS PubMed, Web of Science and ClinicalTrials.gov were searched through June 2021 to identify possible predictors of phenoconversion from iRBD to Parkinson's disease (PD). The pooled HRs and standardised mean differences (SMDs) with 95% CIs were calculated using fixed-effects or random-effects model. RESULTS A total of 123 studies were included in the meta-analysis. Significant motor dysfunction (HR 1.83, 95% CI 1.33 to 2.51, I2=86.8%, p<0.001), constipation (HR 1.52, 95% CI 1.26 to 1.84, I2=8.3%, p=0.365), orthostatic hypotension (HR 1.93, 95% CI 1.05 to 3.53, I2=54.9%, p=0.084), hyposmia (HR 2.78, 95% CI 1.83 to 4.23, I2=23.9%, p=0.255), mild cognitive impairment (HR 2.27, 95% CI 1.58 to 3.27, I2=0%, p=0.681) and abnormal colour vision (SMD -0.34, 95% CI -0.63 to -0.05, I2=45.6%, p=0.087) correlated with susceptibility to PD. The process can also be traced by putaminal dopamine transporter imaging (HR 2.60, 95% CI 1.94 to 3.48, I2=0%, p=0.781) and tonic electromyographic activity (HR 1.50, 95% CI 1.04 to 2.15, I2=70%, p=0.018). CONCLUSIONS The predictive value of each biomarker was initially highlighted with comprehensive evaluation. Combining specific predictors with high sensitivity is promising for detecting phenoconversion in the prodromal stage. Large-scale and multicentre studies are pivotal to extend our findings.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China .,CAS Center for Excellence in Brain Science & Intelligence Technology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Geng C, Wang S, Li Z, Xu P, Bai Y, Zhou Y, Zhang X, Li Y, Zhang J, Zhang H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front Aging Neurosci 2022; 14:844483. [PMID: 35431890 PMCID: PMC9012114 DOI: 10.3389/fnagi.2022.844483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study investigates the topological properties of brain functional networks in patients with isolated rapid eye movement sleep behavior disorder (iRBD).Participants and MethodsA total of 21 patients with iRBD (iRBD group) and 22 healthy controls (HCs) were evaluated using resting-state functional MRI (rs-fMRI) and neuropsychological measures in cognitive and motor function. Data from rs-fMRI were analyzed using graph theory, which included small-world properties, network efficiency, network local efficiency, nodal shortest path, node efficiency, and network connectivity, as well as the relationship between behavioral characteristics and altered brain topological features.ResultsRey-Osterrieth complex figure test (ROCFT-copy), symbol digital modalities test (SDMT), auditory verbal learning test (AVLT)-N1, AVLT-N2, AVLT-N3, and AVLT-N1-3 scores were significantly lower in patients with iRBD than in HC (P < 0.05), while trail making test A (TMT-A), TMT-B, and Unified Parkinson’s Disease Rating Scale Part-III (UPDRS-III) scores were higher in patients with iRBD (P < 0.05). Compared with the HCs, patients with iRBD had no difference in the small-world attributes (P > 0.05). However, there was a significant decrease in network global efficiency (P = 0.0052) and network local efficiency (P = 0.0146), while an increase in characteristic path length (P = 0.0071). There was lower nodal efficiency in occipital gyrus and nodal shortest path in frontal, parietal, temporal lobe, and cingulate gyrus. Functional connectivities were decreased between the nodes of occipital with the regions where they had declined nodal shortest path. There was a positive correlation between TMT-A scores and the nodal efficiency of the right middle occipital gyrus (R = 0.602, P = 0.014).ConclusionThese results suggest that abnormal behaviors may be associated with disrupted brain network topology and functional connectivity in patients with iRBD and also provide novel insights to understand pathophysiological mechanisms in iRBD.
Collapse
Affiliation(s)
- Chaofan Geng
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shenghui Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Pengfei Xu
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yingying Bai
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Zhou
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xinyu Zhang
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
| | - Yongli Li
- Department of Functional Imaging, Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongju Zhang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
- *Correspondence: Hongju Zhang,
| |
Collapse
|
13
|
Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci U S A 2022; 119:e2111405119. [PMID: 35294277 PMCID: PMC8944747 DOI: 10.1073/pnas.2111405119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our results demonstrate the existence of early cellular pathways and network alterations in oligodendrocytes in the alpha-synucleinopathies Parkinson’s disease and multiple system atrophy. They further reveal the involvement of an immune component triggered by alpha-synuclein protein, as well as a connection between (epi)genetic changes and immune reactivity in multiple system atrophy. The knowledge generated in this study could be used to devise novel therapeutic approaches to treat synucleinopathies. Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinson’s disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4+ oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4+ OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4+ OLCs, but not in SNCAtrip O4+ OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4+ OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4+ OLCs with MSA O4+ OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4+ OLCs.
Collapse
|
14
|
de Natale ER, Wilson H, Politis M. Predictors of RBD progression and conversion to synucleinopathies. Curr Neurol Neurosci Rep 2022; 22:93-104. [PMID: 35274191 PMCID: PMC9001233 DOI: 10.1007/s11910-022-01171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Purpose of review Rapid eye movement (REM) sleep behaviour disorder (RBD) is considered the expression of the initial neurodegenerative process underlying synucleinopathies and constitutes the most important marker of their prodromal phase. This article reviews recent research from longitudinal research studies in isolated RBD (iRBD) aiming to describe the most promising progression biomarkers of iRBD and to delineate the current knowledge on the level of prediction of future outcome in iRBD patients at diagnosis. Recent findings Longitudinal studies revealed the potential value of a variety of biomarkers, including clinical markers of motor, autonomic, cognitive, and olfactory symptoms, neurophysiological markers such as REM sleep without atonia and electroencephalography, genetic and epigenetic markers, cerebrospinal fluid and serum markers, and neuroimaging markers to track the progression and predict phenoconversion. To-date the most promising neuroimaging biomarker in iRBD to aid the prediction of phenoconversion is striatal presynaptic striatal dopaminergic dysfunction. Summary There is a variety of potential biomarkers for monitoring disease progression and predicting iRBD conversion into synucleinopathies. A combined multimodal biomarker model could offer a more sensitive and specific tool. Further longitudinal studies are warranted to iRBD as a high-risk population for early neuroprotective interventions and disease-modifying therapies.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
15
|
Translocation of TMEM175 Lysosomal Potassium Channel to the Plasma Membrane by Dynasore Compounds. Int J Mol Sci 2021; 22:ijms221910515. [PMID: 34638858 PMCID: PMC8508992 DOI: 10.3390/ijms221910515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson’s disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.
Collapse
|
16
|
Chen F, Li Y, Ye G, Zhou L, Bian X, Liu J. Development and Validation of a Prognostic Model for Cognitive Impairment in Parkinson's Disease With REM Sleep Behavior Disorder. Front Aging Neurosci 2021; 13:703158. [PMID: 34322014 PMCID: PMC8311737 DOI: 10.3389/fnagi.2021.703158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
The presentation and progression of Parkinson’s disease (PD) are not uniform, but the presence of rapid eye movement sleep behavior disorder (RBD) in PD patients may indicate a worse prognosis than isolated PD. Increasing evidence suggests that patients with comorbid PD and RBD (PD-RBD) are more likely to develop cognitive impairment (CI) than those with isolated PD; however, the predictors of CI in PD-RBD patients are not well understood. This study aimed to develop a prognostic model for predicting mild cognitive impairment (MCI) in PD-RBD patients. The data of PD-RBD patients were extracted from the Parkinson’s Progression Markers Initiative study (PPMI), and the sample was randomly divided into a training set (n = 96) and a validation set (n = 24). PD-MCI as defined by the level II Movement Disorder Society (MDS) diagnostic criteria was the outcome of interest. The demographic features, clinical assessments, dopamine transporter (DAT) imaging data, cerebrospinal fluid (CSF) analyses and genetic data of PD patients were considered candidate predictors. We found that performance on the University of Pennsylvania Smell Identification Test (UPSIT), the mean signal and asymmetry index of the putamen on DAT imaging, p-tau/α-syn and p-tau in CSF, and rs55785911 genotype were predictors of PD-MCI in PD-RBD patients. A C-index of 0.81 was obtained with this model, and a C-index of 0.73 was obtained in the validation set. Favorable results of calibrations and decision curve analysis demonstrated the efficacy and feasibility of this model. In conclusion, we developed a prognostic model for predicting MCI in PD-RBD patients; the model displayed good discrimination and calibration and may be a convenient tool for clinical application. Larger samples and external validation sets are needed to validate this model.
Collapse
Affiliation(s)
- Fangzheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanyu Ye
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|