1
|
Russo Y, Wang Z, Ye J, Leveridge P, Nieuwboer A, Wilson M, Norris M, Kal E, Lamb SE, Young WR. Efficacy of a single session of anticipatory postural adjustments training to support people with Parkinson's overcoming freezing of gait: a multi-methods approach. J Rehabil Med 2025; 57:jrm42491. [PMID: 40376751 DOI: 10.2340/jrm.v57.42491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
OBJECTIVE To assess the efficacy of anticipatory postural adjustments training on the ability to successfully step from freezing of gait, and to evaluate the contribution of attentional processes to potential benefits using an additional attentional-control training intervention. DESIGN Crossover-design. SUBJECTS/PATIENTS Nineteen people with Parkinson's and freezing (females: 10; age:75.5 ± 7.5 years) tested while ON medication. METHODS Participants navigated a cluttered virtual domestic environment with freeze-provoking tasks. Assessments occurred in the laboratory at baseline, post-anticipatory postural adjustments training, and post-attentional-control training, with randomized training order. All training was video-based. Video annotation was used to identify freezing events. Participants' immediately recollected thoughts they had during the tasks were analysed with content analysis. Perceived safety and effectiveness of the strategies were reported in follow-up calls held 4 weeks post-assessment. RESULTS Successful step initiations increased from 57% at baseline to 77% post-anticipatory postural adjustments training (p = 0.034). Participants rated the interventions as safe and effective, reporting increased balance confidence (70% to 90%), and reduced fear (p = 0.01), after the anticipatory postural training. Attentional-control training alone was perceived as less effective compared with more goal-directed anticipatory postural adjustments training. CONCLUSION Video-based anticipatory postural adjustments training significantly improved step initiation from freezing when used during challenging tasks and in complex environments. Anticipatory postural adjustments training shows promise as an effective "rescue strategy" that could be learned remotely/at home.
Collapse
Affiliation(s)
| | | | - Jiaxi Ye
- University of Exeter, Exeter, UK
| | | | | | | | | | - Elmar Kal
- Brunel University London, London, UK
| | | | | |
Collapse
|
2
|
Tosserams A, Fasano A, Gilat M, Factor SA, Giladi N, Lewis SJG, Moreau C, Bloem BR, Nieuwboer A, Nonnekes J. Management of freezing of gait - mechanism-based practical recommendations. Nat Rev Neurol 2025:10.1038/s41582-025-01079-6. [PMID: 40169855 DOI: 10.1038/s41582-025-01079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Freezing of gait (FOG) is a debilitating motor symptom that commonly occurs in Parkinson disease, atypical parkinsonism and other neurodegenerative conditions. Management of FOG is complex and requires a multifaceted approach that includes pharmacological, surgical and non-pharmacological interventions. In this Expert Recommendation, we provide state-of-the-art practical recommendations for the management of FOG, based on the latest insights into the pathophysiology of the condition. We propose two complementary treatment flows, both of which are linked to the pathophysiology and tailored to specific FOG phenotypes. The first workflow focuses on the reduction of excessive inhibitory outflow from the basal ganglia through use of dopaminergic medication or advanced therapies such as deep brain stimulation and infusion therapy. The second workflow focuses on facilitation of processing across cerebral compensatory networks by use of non-pharmacological interventions. We also highlight interventions that have potential for FOG but are not supported by sufficient evidence to recommend for clinical application. Our updated recommendations are intended to enable effective symptomatic relief once FOG has developed, but we also consider potential targets for preventive approaches. The recommendations are based on scientific evidence where available, supplemented with practice-based evidence informed by our clinical experience.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Moran Gilat
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's disease and Movement Disorder Program, Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Brain Institute, Tel-Aviv Sourasky Medical Center, Faculty of Medicine and Health Sciences, Sagol School of Neurosciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Simon J G Lewis
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Caroline Moreau
- Expert Centre for Parkinson's Disease, Lille Neuroscience and Cognition, Lille University Hospital, Lille, France
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands.
| |
Collapse
|
3
|
Hung YT, Wu RM, Huang CY. Differentiation in theta and gamma activation in weight-shifting learning between people with parkinson's disease of different anxiety severities. GeroScience 2024; 46:6283-6299. [PMID: 38890205 PMCID: PMC11493913 DOI: 10.1007/s11357-024-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Anxiety and postural control deficits may be related in people with Parkinson's disease (PwPD). However, the association between anxiety levels and weight-shifting control remains ambiguous. This study investigated whether 1) weight-shifting control differed between PwPD with and without anxiety, and 2) the learning effect of weight-shifting differed between the two populations. Additionally, we evaluated cortical activities to investigate neural mechanisms underlying weight-shifting control. Twenty-eight PwPD (14 anxiety, 14 nonanxiety) participated in a 5-day weight-shifting study by coupling the bearing weight of their more-affected leg to a sinusoidal target at 0.25 Hz. We tested the weight-shifting control on day 1 (pretest), day 3 (posttest), and day 5 (retention test) with a learning session on day 3. The error and jerk of weight-shifting trajectory and the theta and gamma powers of electroencephalography in prefrontal, frontal, sensorimotor and parietal-occipital areas were measured. At the pretest, the anxiety group showed larger error and smaller jerk of weight-shifting with greater prefrontal theta, frontal gamma, and sensorimotor gamma powers than the nonanxiety group. Anxiety intensity was correlated positively with weight-shifting error and theta power but negatively with weight-shifting jerk. Reduced weight-shifting error with increased theta power after weight-shifting learning was observed in the nonanxiety group. However, the anxiety group showed decreased gamma power after weight-shifting learning without behavior change. Our findings suggest differential weight-shifting control and associated cortical activation between PwPD with and without anxiety. In addition, anxiety would deteriorate weight-shifting control and hinder weight-shifting learning benefits in PwPD, leading to less weight-shifting accuracy and correction.
Collapse
Affiliation(s)
- Yu-Ting Hung
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ya Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Camicioli R, Morris ME, Pieruccini‐Faria F, Montero‐Odasso M, Son S, Buzaglo D, Hausdorff JM, Nieuwboer A. Prevention of Falls in Parkinson's Disease: Guidelines and Gaps. Mov Disord Clin Pract 2023; 10:1459-1469. [PMID: 37868930 PMCID: PMC10585979 DOI: 10.1002/mdc3.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 10/24/2023] Open
Abstract
Background People living with Parkinson's disease (PD) have a high risk for falls. Objective To examine gaps in falls prevention targeting people with PD as part of the Task Force on Global Guidelines for Falls in Older Adults. Methods A Delphi consensus process was used to identify specific recommendations for falls in PD. The current narrative review was conducted as educational background with a view to identifying gaps in fall prevention. Results A recent Cochrane review recommended exercises and structured physical activities for PD; however, the types of exercises and activities to recommend and PD subgroups likely to benefit require further consideration. Freezing of gait, reduced gait speed, and a prior history of falls are risk factors for falls in PD and should be incorporated in assessments to identify fall risk and target interventions. Multimodal and multi-domain fall prevention interventions may be beneficial. With advanced or complex PD, balance and strength training should be administered under supervision. Medications, particularly cholinesterase inhibitors, show promise for falls prevention. Identifying how to engage people with PD, their families, and health professionals in falls education and implementation remains a challenge. Barriers to the prevention of falls occur at individual, environmental, policy, and health system levels. Conclusion Effective mitigation of fall risk requires specific targeting and strategies to reduce this debilitating and common problem in PD. While exercise is recommended, the types and modalities of exercise and how to combine them as interventions for different PD subgroups (cognitive impairment, freezing, advanced disease) need further study.
Collapse
Affiliation(s)
- Richard Camicioli
- Department of Medicine (Neurology) and Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Meg E. Morris
- La Trobe University, Academic and Research Collaborative in Health & HealthscopeMelbourneVictoriaAustralia
| | - Frederico Pieruccini‐Faria
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Manuel Montero‐Odasso
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Surim Son
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - David Buzaglo
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Department of Physical Therapy, Faculty of Medicine, Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Rush Alzheimer's Disease Center and Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy)KU LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Dijkstra BW, Gilat M, D'Cruz N, Zoetewei D, Nieuwboer A. Neural underpinnings of freezing-related dynamic balance control in people with Parkinson's disease. Parkinsonism Relat Disord 2023; 112:105444. [PMID: 37257264 DOI: 10.1016/j.parkreldis.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/08/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION People with Parkinson's disease (PD) with freezing of gait (FOG; freezers) show impaired dynamic balance and experience falls more frequently compared to those without (non-freezers). Here, we explore the neural underpinnings of these freezing-related balance problems. METHODS 12 freezers, 16 non-freezers and 14 controls performed a dynamic balance task in the lab. The next day, the same task was investigated in the MRI-scanner through motor imagery (MI). A visual imagery (VI) control task was also performed. Imagery engagement was determined by comparing the performance times between the dynamic balance task, and its MI- and VI-variants. Balance-related brain activations in regions of interest were contrasted between groups based on an MI > rest versus VI > rest contrast. RESULTS Freezers and non-freezers were matched for age, cognition and disease severity. Similar performance times between the balance control task and the MI-conditions revealed excellent imagery engagement. Compared to non-freezers, freezers showed decreased activation in regions of interest located in the left mesencephalic locomotor region (MLR; p = 0.006), right anterior cerebellum (p = 0.017) and cerebellar vermis (p < 0.001). Intriguingly, non-freezers showed higher activations in the cerebellar vermis than controls (p = 0.010). CONCLUSION Overall, we showed that decreased activation in the left MLR, and cerebellar regions in freezers relative to non-freezers could explain why dynamic balance is more affected in freezers. As non-freezers displayed increased cerebellar vermis activation compared to controls, it is possible that freezers show an inability to recruit sufficient compensatory cerebellar activity for effective dynamic balance control.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Moran Gilat
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium.
| | - Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Demi Zoetewei
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| |
Collapse
|
6
|
Leroy T, Baggen RJ, Lefeber N, Herssens N, Santens P, De Letter M, Maes L, Bouche K, Van Bladel A. Effects of Oral Levodopa on Balance in People with Idiopathic Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:3-23. [PMID: 36617752 PMCID: PMC9912739 DOI: 10.3233/jpd-223536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Balance impairment is a frequent cause of morbidity and mortality in people with Parkinson's disease (PD). As opposed to the effects of appendicular motor symptoms, the effects of Levodopa on balance impairment in idiopathic PD are less clear. OBJECTIVE To review the literature on the effects of oral Levodopa on clinical balance test performance, posturography, step initiation, and responses to perturbation in people with idiopathic PD (PwPD). METHODS A systematic search of three scientific databases (Pubmed, Embase, and Web of Science) was conducted in accordance with PRISMA guidelines. For the pilot meta-analysis, standardized mean differences with 95% confidence intervals were calculated using an inverse variance random effects model. Data not suitable for implementation in the meta-analysis (missing means or standard deviations, and non-independent outcomes) were analyzed narratively. RESULTS A total of 2772 unique studies were retrieved, of which 18 met the eligibility criteria and were analyzed, including data of 710 idiopathic PwPD. Levodopa had a significant positive effect on the Berg Balance Scale, the Push and Release test, and jerk and frequency parameters during posturography. In contrast, some significant negative effects on velocity-based sway parameters were found during posturography and step initiation. However, Levodopa had no significant effect on most step initiation- and all perturbation parameters. CONCLUSION The effects of Levodopa on balance in PwPD vary depending on the outcome parameters and patient inclusion criteria. A systematic approach with well-defined outcome parameters, and prespecified, sensitive and reliable tests is needed in future studies to unravel the effects of oral Levodopa on balance.
Collapse
Affiliation(s)
- Tim Leroy
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Remco J. Baggen
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nina Lefeber
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nolan Herssens
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Research Group BrainComm, Ghent University, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Research Group BrainComm, Ghent University, Ghent, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Katie Bouche
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anke Van Bladel
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Lewis S, Factor S, Giladi N, Nieuwboer A, Nutt J, Hallett M. Stepping up to meet the challenge of freezing of gait in Parkinson's disease. Transl Neurodegener 2022; 11:23. [PMID: 35490252 PMCID: PMC9057060 DOI: 10.1186/s40035-022-00298-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
There has been a growing appreciation for freezing of gait as a disabling symptom that causes a significant burden in Parkinson’s disease. Previous research has highlighted some of the key components that underlie the phenomenon, but these reductionist approaches have yet to lead to a paradigm shift resulting in the development of novel treatment strategies. Addressing this issue will require greater integration of multi-modal data with complex computational modeling, but there are a number of critical aspects that need to be considered before embarking on such an approach. This paper highlights where the field needs to address current gaps and shortcomings including the standardization of definitions and measurement, phenomenology and pathophysiology, as well as considering what available data exist and how future studies should be constructed to achieve the greatest potential to better understand and treat this devastating symptom.
Collapse
Affiliation(s)
- Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Stewart Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - John Nutt
- Movement Disorder Section, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
D'Cruz N, Nieuwboer A. Can Motor Arrests in Other Effectors Be Used as Valid Markers of Freezing of Gait? Front Hum Neurosci 2021; 15:808734. [PMID: 34975441 PMCID: PMC8716925 DOI: 10.3389/fnhum.2021.808734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, Leuven, Belgium
| |
Collapse
|
9
|
Bliss RR, Church FC. Golf as a Physical Activity to Potentially Reduce the Risk of Falls in Older Adults with Parkinson's Disease. Sports (Basel) 2021; 9:sports9060072. [PMID: 34070988 PMCID: PMC8224548 DOI: 10.3390/sports9060072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Advanced age is associated with an increased risk for falls in aging adults. Older adults are also more likely to be diagnosed with Parkinson’s disease (PD), with advanced age as the most significant risk factor. PD is a neurodegenerative disorder with four Cardinal motor symptoms: rigidity, bradykinesia, postural instability, and tremor. Thus, people (person)-with-Parkinson’s disease (PwP) have an even greater risk of falling than non-disorder age-matched peers. Exercise is an activity requiring physical effort, typically carried out to sustain or improve overall health and fitness, and it lowers the risk of falls in the general population. The sport of golf provides a low-impact all-around workout promoting a range of motion, activation of muscles in the upper and lower body, flexibility, and balance. Swinging a golf club offers a unique combination of high amplitude axial rotation, strengthening postural musculature, coordination, and stabilization, demonstrating the potential to impact PD symptoms positively. Golf may be a novel exercise treatment regimen for PD to use in conjunction with traditional medical therapy. We completed a literature review to determine the relationship between the game of golf, PD, and the risk of falls. We concluded that regularly playing golf can lower the risk for falls in community ambulating older adults with PD and demonstrates the potential to improve quality of life for PwP.
Collapse
Affiliation(s)
| | - Frank C. Church
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|