1
|
Ercan Z, Deniz G, Yentur SB, Arikan FB, Karatas A, Alkan G, Koca SS. Effects of acute aerobic exercise on cytokines, klotho, irisin, and vascular endothelial growth factor responses in rheumatoid arthritis patients. Ir J Med Sci 2023; 192:491-497. [PMID: 35296975 DOI: 10.1007/s11845-022-02970-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes cartilage and bone damage as well as disability. AIMS : The aim of this study was to examine the effects of acute aerobic exercise on cytokines such as serum interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α) and irisin, vascular endothelial growth factor(VEGF) and klotho in RA patients. METHODS: Forty RA patient and 40 healthy volunteers of the same age participated in this study. All participants walked on the treadmill for 30 minutes at 60-80% of maximal heart rate. Blood samples were taken before and immediately after the exercise. Serum levels of IL-6, IL1β, TNF-α and irisin, VEGF and klotho were measured by enzyme-linked immunosorbent analysis. RESULTS: Baseline levels of inflammatory cytokines, irisin, VEGF and klotho were found to be higher in RA patients compared to the control group. In both groups, there was an increase in serum klotho levels after exercise compared to baseline (p<0.05), while a decrease in IL1β, TNF-α levels were observed. While serum VEGF level decreased in RA group, it increased in the control group(p<0.05). Irisin levels decreased in both groups. IL-6 level did not change in the control group, while it increased in RA group. A single exercise session had an acute anti-inflammatory effect in RA patients. CONCLUSION It can be concluded that acute aerobic exercise can be beneficial for patients with RA through cytokine, irisin, klotho and VEGF levels, and also it can be safely implemented to the RA rehabilitation program for additional anti-inflammatory effects. Trial registration ClinicalTrials.gov: NCT04439682.
Collapse
Affiliation(s)
- Zubeyde Ercan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey.
| | - Gulnihal Deniz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Songül Baglan Yentur
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Funda Bulut Arikan
- Department of Physiology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ahmet Karatas
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Alkan
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Serdar Koca
- Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
2
|
Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med 2022; 20:429. [PMID: 36348343 PMCID: PMC9644617 DOI: 10.1186/s12916-022-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) can lead to pulmonary dysfunction that is associated with pulmonary inflammation. Moreover, little is known regarding the therapeutic role of exercise training on pulmonary pathophysiology in NAFLD. The present study aimed to investigate the effect of exercise training on high-fat high-carbohydrate (HFHC)-induced pulmonary dysfunction in C57BL/6 mice. METHODS Male C57BL/6 mice (N = 40) were fed a standard Chow (n = 20) or an HFHC (n = 20) diet for 15 weeks. After 8 weeks of dietary treatment, they were further assigned to 4 subgroups for the remaining 7 weeks: Chow (n = 10), Chow plus exercise (Chow+EX, n = 10), HFHC (n = 10), or HFHC plus exercise (HFHC+EX, n = 10). Both Chow+EX and HFHC+EX mice were subjected to treadmill running. RESULTS Chronic exposure to the HFHC diet resulted in obesity with hepatic steatosis, impaired glucose tolerance, and elevated liver enzymes. The HFHC significantly increased fibrotic area (p < 0.001), increased the mRNA expression of TNF-α (4.1-fold, p < 0.001), IL-1β (5.0-fold, p < 0.001), col1a1 (8.1-fold, p < 0.001), and Timp1 (6.0-fold, p < 0.001) in the lung tissue. In addition, the HFHC significantly altered mitochondrial function (p < 0.05) along with decreased Mfn1 protein levels (1.8-fold, p < 0.01) and increased Fis1 protein levels (1.9-fold, p < 0.001). However, aerobic exercise training significantly attenuated these pathophysiologies in the lungs in terms of ameliorating inflammatory and fibrogenic effects by enhancing mitochondrial function in lung tissue (p < 0.001). CONCLUSIONS The current findings suggest that exercise training has a beneficial effect against pulmonary abnormalities in HFHC-induced NAFLD through improved mitochondrial function.
Collapse
Affiliation(s)
- Jinkyung Cho
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.,Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea
| | - Bruce D Johnson
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kymberly D Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Niven
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dongwook Yeo
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Chul-Ho Kim
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Erekat NS, Al-Jarrah MD. Endurance exercise training suppresses myostatin upregulation and nuclear factor-kappa B activation in a mouse model of Parkinson's disease. Vet World 2022; 15:383-389. [PMID: 35400955 PMCID: PMC8980372 DOI: 10.14202/vetworld.2022.383-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Muscle atrophy is common in Parkinson’s disease (PD). Although myostatin has been implicated in muscle atrophy, its expression in PD skeletal muscle has not been investigated. Therefore, this study aimed to elucidate the influence of PD induction and exercise training on myostatin expression in the gastrocnemius skeletal muscle. Materials and Methods: Thirty albino mice were randomly selected and separated into three groups of 10 mice each: Sedentary control, sedentary PD (SPD), and exercised PD (EPD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid were used to induce chronic parkinsonism in the PD groups. Immunohistochemistry was used to investigate the expression of myostatin and nuclear factor kappa B (NF-kB) in gastrocnemius muscles of all three groups. Results: Myostatin expression and NF-kB nuclear localization, indicative of its activation, were significantly (p<0.01) higher in gastrocnemius skeletal muscle in the SPD group than in the control and EPD groups. Concomitantly, the average cross-sectional area of gastrocnemius muscle fibers in the SPD albino mice was significantly smaller (p<0.01) than in the control and EPD groups, indicating muscle atrophy. Conclusion: The present data are the first to indicate a correlation between PD induction and myostatin overexpression and NF-kB activation in the gastrocnemius muscle, potentially promoting the muscle atrophy commonly seen in PD. Additionally, the current data are the first to indicate the beneficial effects of exercise training on PD-associated myostatin overexpression, NF-κB activation, and muscle atrophy. Thus, our data are the first to suggest that myostatin and NF-κB might be regarded as potential therapeutic targets in an attempt to ameliorate skeletal muscle abnormalities commonly observed in PD.
Collapse
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Muhammed D. Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Irbid 22110, Jordan
| |
Collapse
|
4
|
Lechner SA, Kletzien H, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Muscle Gene Expression in a Rat Model of Early-Onset Parkinson's Disease. Laryngoscope 2021; 131:E2874-E2879. [PMID: 34057223 PMCID: PMC8595495 DOI: 10.1002/lary.29661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES/HYPOTHESIS Voice disorders in Parkinson's disease (PD) are early-onset, manifest in the preclinical stages of the disease, and negatively impact quality of life. The complete loss of function in the PTEN-induced kinase 1 gene (Pink1) causes a genetic form of early-onset, autosomal recessive PD. Modeled after the human inherited mutation, the Pink1-/- rat demonstrates significant cranial sensorimotor dysfunction including declines in ultrasonic vocalizations. However, the underlying genetics of the vocal fold thyroarytenoid (TA) muscle that may contribute to vocal deficits has not been studied. The aim of this study was to identify differentially expressed genes in the TA muscle of 8-month-old male Pink1-/- rats compared to wildtype controls. STUDY DESIGN Animal experiment with control. METHODS High throughput RNA sequencing was used to examine TA muscle gene expression in adult male Pink1-/- rats and wildtype controls. Weighted Gene Co-expression Network Analysis was used to construct co-expression modules to identify biological networks, including where Pink1 was a central node. The ENRICHR tool was used to compare this gene set to existing human gene databases. RESULTS We identified 134 annotated differentially expressed genes (P < .05 cutoff) and observed enrichment in the following biological pathways: Parkinson's disease (Casp7, Pink1); Parkin-Ubiquitin proteasome degradation (Psmd12, Psmd7); MAPK signaling (Casp7, Ppm1b, Ppp3r1); and inflammatory TNF-α, Nf-κB Signaling (Casp7, Psmd12, Psmd7, Cdc34, Bcl7a, Peg3). CONCLUSIONS Genes and pathways identified here may be useful for evaluating the specific mechanisms of peripheral dysfunction including within the laryngeal muscle and have potential to be used as experimental biomarkers for treatment development. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2874-E2879, 2021.
Collapse
Affiliation(s)
- Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
5
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
6
|
Al-Jarrah MD, Erekat NS. Endurance exercise training suppresses Parkinson disease-induced overexpression of apoptotic mediators in the heart. NeuroRehabilitation 2021; 48:315-320. [PMID: 33814475 DOI: 10.3233/nre-201650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUNDWe have shown elevated levels of p53 and active caspase-3 in the heart with Parkinson disease (PD). The main aim of this study is to examine the effect of treadmill training on the cardiac expression of p53 and active caspase-3 in the mouse with induced Parkinsonism. METHODS Thirty randomly selected normal albino mice were equally divided into the following 3 groups: sedentary control (SC), sedentary Parkinson diseased (SPD), and exercised Parkinson diseased (EPD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p) were used to induce chronic Parkinson disease in the SPD and EPD animals. The expression of p53 and active caspase-3 was investigated, using immunohistochemistry, in the heart in each animal group. RESULTS Both p53 and active caspase-3 expression was significantly (p value < 0.05) reduced in the PD heart following endurance exercise training. CONCLUSION Our present data suggest that chronic exercise training reduced PD-induced upregulation of p53 and active caspase-3 in the heart. Thus, our study suggests that inhibiting p53 and/or active caspase-3 may be considered as a therapeutic approach to ameliorate PD cardiomyopathy.
Collapse
Affiliation(s)
- Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour S Erekat
- Department of Anatomy. Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Honda Y, Tanaka N, Kajiwara Y, Kondo Y, Kataoka H, Sakamoto J, Akimoto R, Nawata A, Okita M. Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLoS One 2021; 16:e0244120. [PMID: 33983958 PMCID: PMC8118259 DOI: 10.1371/journal.pone.0244120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Macrophage accumulation in response to decreasing myonuclei may be the major mechanism underlying immobilization-induced muscle fibrosis in muscle contracture, an intervention strategy suppressing these lesions is necessary. Therefore, this research investigated the effect of belt electrode-skeletal muscle electrical stimulation (B-SES), a new electrical stimulation device, to the macrophage accumulation via myonuclei decrease in immobilization-induced muscle fibrosis. MATERIALS AND METHODS 18 Wistar male rats were divided into the control group, immobilization group (with plaster cast fixation to immobilize the soleus muscles in a shortened position for 2 weeks), and B-SES group (with muscle contractile exercise through B-SES during the immobilization period). B-SES stimulation was performed at a frequency of 50 Hz and an intensity of 4.7 mA, muscle contractile exercise by B-SES was applied to the lower limb muscles for 20 minutes/session (twice a day) for 2 weeks (6 times/week). The bilateral soleus muscles were used for histological, immunohistochemical, biochemical, and molecular biological analyses. RESULTS The number of myonuclei was significantly higher in the B-SES group than in the immobilization group, and there was no significant difference between the B-SES and control groups. The cross-sectional area of type I and II myofibers in the immobilization and B-SES groups was significantly lower than that in the control group, and the cross-sectional area of type I myofibers in the B-SES group was higher than that in the immobilization group. However, Atrogin-1 and MuRF-1 mRNA expression in the immobilization and B-SES groups was significantly higher than those in the control group. Additionally, the number of macrophages, IL-1β, TGF-β1, and α-SMA mRNA expression, and hydroxyproline expression was significantly lower in the control and B-SES groups than those in the immobilization group. CONCLUSION This research surmised that muscle contractile exercise through B-SES prevented immobilization-induced muscle fibrosis, and this alteration suppressed the development of muscle contracture.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuhiro Kajiwara
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Ryuji Akimoto
- Research and Development Division, HOMER ION Co., Ltd., Shibuya, Tokyo, Japan
| | - Atsushi Nawata
- Medical Engineering Research Laboratory, ALCARE Co., Ltd., Sumida, Tokyo, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
O'Bryant SE, Edwards M, Zhang F, Johnson LA, Hall J, Kuras Y, Scherzer CR. Potential two-step proteomic signature for Parkinson's disease: Pilot analysis in the Harvard Biomarkers Study. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:374-382. [PMID: 31080873 PMCID: PMC6502745 DOI: 10.1016/j.dadm.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction We sought to determine if our previously validated proteomic profile for detecting Alzheimer's disease would detect Parkinson's disease (PD) and distinguish PD from other neurodegenerative diseases. Methods Plasma samples were assayed from 150 patients of the Harvard Biomarkers Study (PD, n = 50; other neurodegenerative diseases, n = 50; healthy controls, n = 50) using electrochemiluminescence and Simoa platforms. Results The first step proteomic profile distinguished neurodegenerative diseases from controls with a diagnostic accuracy of 0.94. The second step profile distinguished PD cases from other neurodegenerative diseases with a diagnostic accuracy of 0.98. The proteomic profile differed in step 1 versus step 2, suggesting that a multistep proteomic profile algorithm to detecting and distinguishing between neurodegenerative diseases may be optimal. Discussion These data provide evidence of the potential use of a multitiered blood-based proteomic screening method for detecting individuals with neurodegenerative disease and then distinguishing PD from other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Melissa Edwards
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Zhang
- Vermont Genetics Network, University of Vermont, Burlington, VT, USA
| | - Leigh A Johnson
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yuliya Kuras
- Advanced Center for Parkinson's Disease Research of Brigham & Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens R Scherzer
- Advanced Center for Parkinson's Disease Research of Brigham & Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|