1
|
Li XY, Hu R, Lou TX, Liu Y, Ding L. Global research trends in transcranial magnetic stimulation for stroke (1994-2023): promising, yet requiring further practice. Front Neurol 2024; 15:1424545. [PMID: 39268062 PMCID: PMC11390666 DOI: 10.3389/fneur.2024.1424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Rong Hu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Tian-Xiao Lou
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Yang Liu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Ling Ding
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| |
Collapse
|
2
|
Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of Repetitive Transcranial Magnetic Stimulation to Improve Upper Limb Motor Performance After Stroke: A Systematic Review. Neurorehabil Neural Repair 2023; 37:837-849. [PMID: 37947106 PMCID: PMC10685705 DOI: 10.1177/15459683231209722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) is a promising technique for improving upper limb motor performance post-stroke. Its application has been guided by the interhemispheric competition model and typically involves suppression of contralesional motor cortex. However, the bimodal balance recovery model prompts a more tailored application of NIBS based on ipsilesional corticomotor function. OBJECTIVE To review and assess the application of repetitive transcranial magnetic stimulation (rTMS) protocols that aimed to improve upper limb motor performance after stroke. METHODS A PubMed search was conducted for studies published between 1st January 2005 and 1st November 2022 using rTMS to improve upper limb motor performance of human adults after stroke. Studies were grouped according to whether facilitatory or suppressive rTMS was applied to the contralesional hemisphere. RESULTS Of the 492 studies identified, 70 were included in this review. Only 2 studies did not conform to the interhemispheric competition model, and facilitated the contralesional hemisphere. Only 21 out of 70 (30%) studies reported motor evoked potential (MEP) status as a biomarker of ipsilesional corticomotor function. Around half of the studies (37/70, 53%) checked whether rTMS had the expected effect by measuring corticomotor excitability (CME) after application. CONCLUSION The interhemispheric competition model dominates the application of rTMS post-stroke. The majority of recent and current studies do not consider bimodal balance recovery model for the application of rTMS. Evaluating CME after the application rTMS could confirm that the intervention had the intended neurophysiological effect. Future studies could select patients and apply rTMS protocols based on ipsilesional MEP status.
Collapse
Affiliation(s)
- Afifa Safdar
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Cathy M. Stinear
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Zhang JP, Xing XX, Zheng MX, Wu JJ, Xue X, Li YL, Hua XY, Ma SJ, Xu JG. Effects of cortico-cortical paired associative stimulation based on multisensory integration to brain network connectivity in stroke patients: study protocol for a randomized doubled blind clinical trial. BMC Neurol 2023; 23:176. [PMID: 37118658 PMCID: PMC10148448 DOI: 10.1186/s12883-023-03218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
INTRODUCTION Brain has a spontaneous recovery after stroke, reflecting the plasticity of the brain. Currently, TMS is used for studies of single-target brain region modulation, which lacks consideration of brain networks and functional connectivity. Cortico-cortical paired associative stimulation (ccPAS) promotes recovery of motor function. Multisensory effects in primary visual cortex(V1) directly influence behavior and perception, which facilitate motor functional recovery in stroke patients. Therefore, in this study, dual-targeted precise stimulation of V1 and primary motor cortex(M1) on the affected hemisphere of stroke patients will be used for cortical visuomotor multisensory integration to improve motor function. METHOD This study is a randomized, double-blind controlled clinical trial over a 14-week period. 69 stroke subjects will be enrolled and divided into sham stimulation group, ccPAS low frequency group, and ccPAS high frequency group. All groups will receive conventional rehabilitation. The intervention lasted for two weeks, five times a week. Assessments will be performed before the intervention, at the end of the intervention, and followed up at 6 and 14 weeks. The primary assessment indicator is the 'Fugl-Meyer Assessment of the Upper Extremity ', secondary outcomes were 'The line bisection test', 'Modified Taylor Complex Figure', 'NIHSS' and neuroimaging assessments. All adverse events will be recorded. DISCUSSION Currently, ccPAS is used for the modulation of neural circuits. Based on spike-timing dependent plasticity theory, we can precisely intervene in the connections between different cortices to promote the recovery of functional connectivity on damaged brain networks after stroke. We hope to achieve the modulation of cortical visuomotor interaction by combining ccPAS with the concept of multisensory integration. We will further analyze the correlation between analyzing visual and motor circuits and explore the alteration of neuroplasticity by the interactions between different brain networks. This study will provide us with a new clinical treatment strategy to achieve precise rehabilitation for patient with motor dysfunction after stroke. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry with code ChiCTR2300067422 and was approved on January 16, 2023.
Collapse
Affiliation(s)
- Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Shu-Jie Ma
- Rehabilitation Department of Traditional Chinese Medicine, The Second Rehabilitation Hospital of Shanghai, No. 25, Lane 860, Changjiang Road, Baoshan District, Shanghai, 200441, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Sánchez-Cuesta FJ, González-Zamorano Y, Arroyo-Ferrer A, Moreno-Verdú M, Romero-Muñoz JP. Repetitive Transcranial Magnetic Stimulation of Primary Motor Cortex for stroke upper limb motor sequelae rehabilitation: A systematic review. NeuroRehabilitation 2023; 52:329-348. [PMID: 37005900 DOI: 10.3233/nre-220306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND: Repetitive Transcranial Magnetic Stimulation (rTMS) over the primary motor cortex (M1) has been used to treat stroke motor sequelae regulating cortical excitability. Early interventions are widely recommended, but there is also evidence showing interventions in subacute or chronic phases are still useful. OBJECTIVE: To synthetize the evidence of rTMS protocols to improve upper limb motor function in people with subacute and/or chronic stroke. METHODS: Four databases were searched in July 2022. Clinical trials investigating the effectiveness of different rTMS protocols on upper limb motor function in subacute or chronic phases post-stroke were included. PRISMA guidelines and PEDro scale were used. RESULTS: Thirty-two studies representing 1137 participants were included. Positive effects of all types of rTMS protocols on upper limb motor function were found. These effects were heterogeneous and not always clinically relevant or related to neurophysiological changes but produced evident changes if evaluated with functional tests. CONCLUSION: rTMS interventions over M1 are effective for improving upper limb motor function in people with subacute and chronic stroke. When rTMS protocols were priming physical rehabilitation better effects were achieved. Studies considering minimal clinical differences and different dosing will help to generalize the use of these protocols in clinical practice.
Collapse
Affiliation(s)
- Francisco José Sánchez-Cuesta
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Yeray González-Zamorano
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, King Juan Carlos University, Alcorcón, Spain
| | - Aída Arroyo-Ferrer
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Marcos Moreno-Verdú
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Juan Pablo Romero-Muñoz
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain
- Brain Damage Unit, Beata María Ana Hospital, Madrid, Spain
| |
Collapse
|
5
|
Staat C, Gattinger N, Gleich B. PLUSPULS: A transcranial magnetic stimulator with extended pulse protocols. HARDWAREX 2023; 13:e00380. [PMID: 36578972 PMCID: PMC9791927 DOI: 10.1016/j.ohx.2022.e00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly applied in basic neuroscience while its field of usage for diagnosing and treating various neurological diseases broadens steadily. A TMS device generates a current pulse in the reach of several thousand ampére to produce a magnetic pulse which induces an electric field around neurons. This electric field, if high enough to depolarize the neuron membrane, generates an action potential at the neuron which travels down the neurons connected to it. The PLUSPULS TMS generates this magnetic pulse by pre-charging a pulse capacitor C with the voltage V C 0 and connecting it with a stimulation coil L . The oscillation of the resonance circuit is cut off after one period and is called a biphasic pulse. PLUSPULS is a high frequency stimulator with inter stimulus intervals (ISI) down to 1ms which enables different pulse protocols as paired pulse or quadri theta burst stimulation. A GUI on PC allows a flexible control of PLUSPULS with varying amplitudes and ISI in one burst. The modular hardware and the control via GUI on PC allows for an easier adjustment on requirements to come. The article provides design considerations, hardware, firmware and software to reconstruct a modular biphasic TMS with enhanced charging network to enable extended pulse protocols.
Collapse
|
6
|
Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2022; 19:24. [PMID: 35193624 PMCID: PMC8862292 DOI: 10.1186/s12984-022-00999-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) has attracted plenty of attention as it has been proved to be effective in facilitating motor recovery in patients with stroke. The aim of this study was to systematically review the effects of repetitive TMS (rTMS) and theta burst stimulation (TBS) protocols in modulating cortical excitability after stroke. Methods A literature search was carried out using PubMed, Medline, EMBASE, CINAHL, and PEDro, to identify studies that investigated the effects of four rTMS protocols—low and high frequency rTMS, intermittent and continuous TBS, on TMS measures of cortical excitability in stroke. A random-effects model was used for all meta-analyses. Results Sixty-one studies were included in the current review. Low frequency rTMS was effective in decreasing individuals’ resting motor threshold and increasing the motor-evoked potential of the non-stimulated M1 (affected M1), while opposite effects occurred in the stimulated M1 (unaffected M1). High frequency rTMS enhanced the cortical excitability of the affected M1 alone. Intermittent TBS also showed superior effects in rebalancing bilateral excitability through increasing and decreasing excitability within the affected and unaffected M1, respectively. Due to the limited number of studies found, the effects of continuous TBS remained inconclusive. Motor impairment was significantly correlated with various forms of TMS measures. Conclusions Except for continuous TBS, it is evident that these protocols are effective in modulating cortical excitability in stroke. Current evidence does support the effects of inhibitory stimulation in enhancing the cortical excitability of the affected M1. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00999-4.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.,Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China.,Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
7
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
8
|
Fang WH, Wang GL, Liu Q, Ding X, Wang ZY, Wang XW, Yang XW, Yang Y, Zhang DW, Wei Q, Zhang H. Effect of 'hand and foot acupuncture with twelve needles' on hemiplegia patients with 'qi deficiency and blood stasis' syndrome in the convalescent stage of Ischaemic stroke: study protocol for a randomised controlled trial. Trials 2021; 22:215. [PMID: 33736678 PMCID: PMC7977321 DOI: 10.1186/s13063-021-05128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Hemiplegia is a common sequela after stroke, and acupuncture is one of the most common physical therapies used to treat hemiplegia during the recovery stage after ischaemic stroke. ‘Hand and foot acupuncture with twelve needles’ is an acupuncture treatment performed after stroke. The principal objective of this study is to assess the efficacy and safety of ‘hand and foot acupuncture with twelve needles’ for hemiplegia in the convalescent stage of ischaemic stroke. Methods This is the protocol for a randomised, controlled clinical trial with two groups: a ‘hand and foot acupuncture with twelve needles’ group and a routine acupuncture group. A total of 208 participants will be randomly assigned to two different groups in a 1:1 ratio and will undergo conventional rehabilitation. Limb function will be evaluated by the simplified Fugl-Meyer assessment scale, Barthel Index, modified Ashworth scale and National Institute of Health stroke scale. The participants will be evaluated at baseline (on the day of enrolment) and followed up at 2 weeks, 1 month, 2 months and 3 months after enrolment. Discussion The results of this study will provide evidence on the effectiveness of ‘hand and foot acupuncture with twelve needles’ in the treatment of limb dysfunction that can be used for future evaluations. Trial registration Chictr.org.cnChiCTR1900021774. Registered on 8 March 2019
Collapse
Affiliation(s)
- Wei-Hao Fang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Gui-Ling Wang
- Beijing Hospital of Traditional Chinese Medicine, Beijing, 100010, China
| | - Qiang Liu
- World Federation of Chinese Medicine Societies, Beijing, 100101, China
| | - Xiao Ding
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Zhen-Yao Wang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Xin-Wei Wang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Xiao-Wei Yang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Yang Yang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Da-Wei Zhang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Qing Wei
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China
| | - Hu Zhang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, 101300, China.
| |
Collapse
|
9
|
Yuan X, Yang Y, Cao N, Jiang C. Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance. Brain Sci 2020; 10:brainsci10090648. [PMID: 32961836 PMCID: PMC7563987 DOI: 10.3390/brainsci10090648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain-stimulation technique that transiently modulates cerebral cortex excitability, achieving overall positive results in poststroke motor-function recovery. Excessive inhibition of the ipsilesional-affected hemisphere by the contralesional-unaffected hemisphere has seriously hindered poststroke motor-function recovery. Hence, intracortical disinhibition can be used as an approach to managing poststroke brain injury. This technique promotes neural plasticity for faster motor-function recovery. rTMS relieves unilateral inhibition of the brain function by regulatinga interhemispheric-imbalanced inhibition. This paper summarized 12 studies from 2016 to date, focusing on rTMS on motor function after acute and chronic stroke by regulating the interhemispheric imbalance of inhibitory inputs. Although rTMS studies have shown promising outcomes on recovery of motor functions in stroke patients, different intervention methods may lead to discrepancies in results. A uniform optimal stimulus model cannot routinely be used, mainly due to the stimulus schemes, stroke types and outcome-measuring differences among studies. Thus, the effect of rTMS on poststroke motor-function recovery should be investigated further to standardize the rTMS program for optimal poststroke motor-function recovery. More randomized, placebo-controlled clinical trials with standardized rTMS protocols are needed to ensure the effectiveness of the treatment.
Collapse
Affiliation(s)
- Xiaoxia Yuan
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100089, China;
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100089, China
| | - Yuan Yang
- College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China;
| | - Na Cao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan;
| | - Changhao Jiang
- Beijing Key Laboratory of Physical Fitness Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100089, China;
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100089, China
- Correspondence: ; Tel.: +86-010-82-099-197
| |
Collapse
|
10
|
Krishnan C. Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restor Neurol Neurosci 2020; 37:363-374. [PMID: 31306142 DOI: 10.3233/rnn-180894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Short interval intracortical inhibition (SICI) is commonly used to assess inhibition in the motor cortex and is known to be affected by the paired-pulse stimulus parameters (i.e., interstimulus interval [ISI], conditioning stimulus intensity [CSI] and test stimulus intensity [TSI]) used during testing. While the effects of stimulus parameters are well-studied in the upper-extremity, evidence in the lower-extremity is lacking. OBJECTIVE To comprehensively examine the effects of alterations in paired-pulse stimulus parameters on the two phases of SICI in the quadriceps muscle group. METHODS Seventeen adults (8 males, 9 females) volunteered to participate in this study. SICI was examined over a range of CSIs (70-90% active motor threshold [AMT]), TSIs (100-140% AMT), and ISIs (1.0-3.0 ms) using both EMG and torque responses elicited by transcranial magnetic stimulation (TMS). RESULTS The results indicated that SICI at 1.0 ms ISI was best revealed with a CSI of 70% and TSI ≥110% AMT, whereas SICI at 2.5 ms ISI was best revealed with a CSI of 80-90% and a TSI of ≥130% AMT. Unlike upper-extremity muscles, evaluating SICI with a CSI of 70% AMT and an ISI of 1.0 ms produced the greatest inhibition for all TSIs. In general, inhibitory effects were contaminated by facilitatory effects when using a TSI of 100% AMT. CONCLUSIONS The amount of inhibition was dependent on the stimulation parameters used during testing. A CSI of 70% AMT, ISI of 1.0 ms, and TSI of ≥110% AMT appear to be optimal for measuring SICI in the quadriceps muscle; however, other parameters can be used if careful consideration is given to the described interaction between the parameters.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA.,School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Anodal Transcranial Direct Current Stimulation over the Vertex Enhances Leg Motor Cortex Excitability Bilaterally. Brain Sci 2019; 9:brainsci9050098. [PMID: 31035662 PMCID: PMC6562544 DOI: 10.3390/brainsci9050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
In many studies, anodal transcranial Direct Current Stimulation (tDCS) is applied near the vertex to simultaneously facilitate leg motor cortex (M1) of both hemispheres and enhance recovery of gait and balance in neurological disorders. However, its effect on the excitability of leg M1 in either hemisphere is not well known. In this double-blind sham-controlled study, corticospinal excitability changes induced in leg M1 of both hemispheres by anodal (2 mA for 20 minutes) or sham tDCS (for 20 min) over the vertex were evaluated. Peak amplitudes of Transcranial Magnetic Stimulation (TMS) induced motor evoked potentials (MEPs) were measured over the contralateral Tibialis Anterior (TA) muscle before and up to 40 min after tDCS in 11 normal participants. Analysis of data from all participants found significant overall increase in the excitability of leg M1 after tDCS. However, in individual subjects there was variability in observed effects. In 4 participants, 20 min of tDCS increased mean MEPs of TAs on both sides; in 4 participants there was increased mean MEP only on one side and in 3 subjects there was no change. It’s not known if the benefits of tDCS in improving gait and balance are dependent on excitability changes induced in one or both leg M1; such information may be useful to predict treatment outcomes.
Collapse
|
12
|
Pan W, Wang P, Song X, Sun X, Xie Q. The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke. Front Neurol 2019; 10:96. [PMID: 30873100 PMCID: PMC6401593 DOI: 10.3389/fneur.2019.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the effects of low frequency transcranial magnetic stimulation (LF-rTMS) combined with motor imagery (MI) on upper limb motor function during stroke rehabilitation. Background: Hemiplegic upper extremity activity obstacle is a common movement disorder after stroke. Compared with a single intervention, sequential protocol or combination of several techniques has been proven to be better for alleviating motor function disorder. Non-invasive neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and motor imagery (MI) have been verified to augment the efficacy of rehabilitation. Methods:Participants were randomly assigned to 2 intervention cohorts: (1) experimental group (rTMS+MI group) was applied at 1 Hz rTMS over the primary motor cortex of the contralesional hemisphere combined with audio-based MI; (2) control group (rTMS group) received the same therapeutic parameters of rTMS combined with audiotape-led relaxation. LF-rTMS protocol was conducted in 10 sessions over 2 weeks for 30 min. Functional measurements include Wolf Motor Function Test (WMFT), the Fugl-Meyer Assessment Upper Extremity (UE-FMA) subscore, the Box and Block Test (BBT), and the Modified Barthel index (MBI) were conducted at baseline, the second week (week 2) and the fourth week (week 4). Results: All assessments of upper limb function improved in both groups at weeks 2 and 4. In particular, significant differences were observed between two groups at end-intervention and after intervention (p < 0.05). In these findings, we saw greater changes of WMFT (p < 0.01), UE-FMA (p < 0.01), BBT (p < 0.01), and MBI (p < 0.001) scores in the experimental group. Conclusions: LF-rTMS combined with MI had a positive effect on motor function of upper limb and can be used for the rehabilitation of upper extremity motor recovery in stroke patients.
Collapse
Affiliation(s)
- Wenxiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopei Sun
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
13
|
Johnson NN, Carey J, Edelman BJ, Doud A, Grande A, Lakshminarayan K, He B. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke. J Neural Eng 2018; 15:016009. [PMID: 28914232 PMCID: PMC5821060 DOI: 10.1088/1741-2552/aa8ce3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS + BCI, compared to sham rTMS + BCI, on motor recovery after stroke in subjects with lasting motor paresis. APPROACH Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. MAIN RESULTS Motor improvements were observed in both real rTMS + BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. SIGNIFICANCE When combined, the results highlight the feasibility and efficacy of combined rTMS + BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS + BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS + BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.
Collapse
Affiliation(s)
- N N Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Carey
- Department of Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - B J Edelman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Doud
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Lakshminarayan
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - B He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|