1
|
Kumar R, Jain V, Kushwah N, Dheer A, Mishra KP, Prasad D, Singh SB. HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway. J Cell Physiol 2021; 236:6754-6771. [PMID: 33788269 DOI: 10.1002/jcp.30337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Hypobaric hypoxia at higher altitudes usually impairs cognitive function. Previous studies suggested that epigenetic modifications are the culprits for this condition. Here, we set out to determine how hypobaric hypoxia mediates epigenetic modifications and how this condition worsens neurodegeneration and memory loss in rats. In the current study, different duration of hypobaric hypoxia exposure showed a discrete pattern of histone acetyltransferases and histone deacetylases (HDACs) gene expression in the hippocampus when compared with control rat brains. The level of acetylation sites in histone H2A, H3 and H4 was significantly decreased under hypobaric hypoxia exposure compared to the control rat's hippocampus. Additionally, inhibiting the HDAC family with sodium butyrate administration (1.2 g/kg body weight) attenuated neurodegeneration and memory loss in hypobaric hypoxia-exposed rats. Moreover, histone acetylation increased at the promoter regions of brain-derived neurotrophic factor (BDNF); thereby its protein expression was enhanced significantly in hypobaric hypoxia exposed rats treated with HDAC inhibitor compared with hypoxic rats. Thus, BDNF expression upregulated cAMP-response element binding protein (CREB) phosphorylation by stimulation of PI3K/GSK3β/CREB axis, which counteracts hypobaric hypoxia-induced spatial memory impairment. In conclusion, these results suggested that sodium butyrate is a novel therapeutic agent for the treatment of spatial memory loss associated with hypobaric hypoxia, and also further studies are warranted to explore specific HDAC inhibitors in this condition.
Collapse
Affiliation(s)
- Rahul Kumar
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Vishal Jain
- Neurophysiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Aastha Dheer
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | | | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Shashi Bala Singh
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
3
|
Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 2019; 10:552. [PMID: 31320610 PMCID: PMC6639330 DOI: 10.1038/s41419-019-1763-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Extremely reduced oxygen (O2) levels are detrimental to myogenic differentiation and multinucleated myotube formation, and chronic exposure to high-altitude hypoxia has been reported to be an important factor in skeletal muscle atrophy. However, how chronic hypoxia causes muscle dysfunction remains unknown. In the present study, we found that severe hypoxia (1% O2) significantly inhibited the function of C2C12 cells (from a myoblast cell line). Importantly, the impairment was continuously manifested even during culture under normoxic conditions for several passages. Mechanistically, we revealed that histone deacetylases 9 (HDAC9), a member of the histone deacetylase family, was significantly increased in C2C12 cells under hypoxic conditions, thereby inhibiting intracellular autophagy levels by directly binding to the promoter regions of Atg7, Beclin1, and LC3. This phenomenon resulted in the sequential dephosphorylation of GSK3β and inactivation of the canonical Wnt pathway, impairing the function of the C2C12 cells. Taken together, our results suggest that hypoxia-induced myoblast dysfunction is due to aberrant epigenetic regulation of autophagy, and our experimental evidence reveals the possible molecular pathogenesis responsible for some muscle diseases caused by chronic hypoxia and suggests a potential therapeutic option.
Collapse
|